Chapter 6 A Tour of the Cell.

Slides:



Advertisements
Similar presentations
THE CELL.
Advertisements

Fig. 6-1 Figure 6.1 How do cellular components cooperate to help the cell function?
Lysosomes: Digestive Compartments
What is the primary functions of the nucleus?
Concept 4.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending.
-Chapter 7 –The Cell Answer the “Key Concept” Questions for Each Section. Period 1 Lab (Quiz) date = Wednesday November 12 Test Date= Friday November 14.
Microscopy In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image The quality of an.
Tour of the Cell. Robert Hooke ( ) Robert Hooke : examined thinly sliced cork and coined term “cell”
It is composed of three types of molecular structures:
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
A tour of the cell.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings CHAPTER 6 THE STRUCTURE AND FUNCTION OF THE CELL All living things are composed.
Read Chapter 4 (all of it) you have a test soon!.
It is composed of three types of molecular structures:
Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending.
4 A Tour of the Cell.
Cells Wassily Kandinsky ( )
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig. 6-7 TEM of a plasma membrane (a) (b) Structure of the plasma membrane Outside of cell Inside of cell 0.1 µm Hydrophilic region Hydrophobic region.
LE 7-2 Hydrophilic head Hydrophobic tail WATER. LE 7-3 Hydrophilic region of protein Hydrophobic region of protein Phospholipid bilayer.
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
Ch. 7 Diagrams Cell Structure. Figure m 1 m 0.1 m 1 cm 1 mm 100  m 10  m 1  m 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins.
Fig m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria.
Prokaryotic Cells Eukaryotic Cells domains Bacteria & Archaea 1-10 μm
Cells.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture for Chapter 4 DNA organization Endomembrane System.
Organization of the Cell
Chapter 6 A Tour of the Cell. Things to Know The differences between eukaryotic and prokaryotic cells The structure and function of organelles common.
Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that.
Chapter 6: Types of Cells and Cell Structures
A TOUR OF THE CELL Chapter 6. The Fundamental Units of Life What do a small compartment in a honeycomb, a prison room, and the area covered by a mobile.
Basic Unit of Life Cell Song. Principles of Cell Theory 1. Cells are basic units of life 2. Biogenesis - All Cells arise from other cells 3. Energy flow.
A Tour of the Cell. Eukaryotic cells have internal membranes that compartmentalize their functions Basic features of all cells: plasma membrane, cytosol,
Cell Structure Revised by Bryant Wong. Cell Theory  All organisms are composed of one or more cells  Cells are the smallest living things  Cells come.
A Tour of the Cell Chapter 6. Overview: The Importance of Cells  Cell Theory: All organisms are made of cells  The cell is the simplest collection of.
A Tour of the Cell. Cytology: science/study of cells Light microscopy resolving power: measure of clarity Electron microscopy TEM (transmission): electron.
Cells… part II. Converting Energy n Mitochondria convert sugars and fats to NRG (ATP) with the help of oxygen – Cellular respiration n Chloroplasts convert.
Ch.7 A Tour of the Cell. Nucleus Genetic material... chromatin chromosomesnucleolus: rRNA; ribosome synthesis Double membrane envelope with pores Protein.
Chapter 6 A (more detailed) Tour of the Cell. Nucleus: Chromatin v. chromosomes Nucleolus synthesizes ribosomes Nuclear pores.
Chapter 6 A Tour of the Cell. Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM),
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Name Ideas??? Aphrodite 2 Naomi 2 Javier 4/2 Esteban 8/7 Lana 1 Neymar 1 Messi 1 Juno 3/5 Brooklyn 1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 4 A View of the Cell. Cell History The microscope was invented in the 17th century Using a microscope, Robert Hooke discovered cells in 1665 All.
Cells Part 2.
Here it is…the structure!...the function!
Chapter 6 A Tour of the Cell.
Chapter 6 A Tour of the Cell.
A TOUR OF THE CELL OVERVIEW
4.2 Parts of the Eukaryotic Cell
Chapter 6 A Tour of the Cell.
Chapter 6 A Tour of the Cell.
6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and
Chapter 6 Part B A tour of The Cell.
Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism is one of two.
It is composed of three types of molecular structures:
A Tour of the Cell: Cell Organelles
Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism.
Cells Unit A Tour of the Cell.
Chapter 6 A Tour of the Cell.
Eukaryotic Cells Eukaryotic cells are characterized by having
Chapter 6 A Tour of the Cell.
Ch 4 Openstax/6 Campbell:
Components of the endomembrane system:
Chapter 6 A Tour of the Cell.
The Extracellular Matrix (ECM) of Animal Cells
Cells… part II.
Chapter 6 A Tour of the Cell.
Chapter 6 Part B A tour of The Cell.
Presentation transcript:

Chapter 6 A Tour of the Cell

You should be able to: Distinguish between the following pairs of terms: magnification and resolution; prokaryotic and eukaryotic cell; free and bound ribosomes; smooth and rough ER Describe the structure and function of the components of the endomembrane system Briefly explain the role of mitochondria, chloroplasts, and peroxisomes Describe the functions of the cytoskeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Describe the structure of a plant cell wall Compare the structure and functions of microtubules, microfilaments, and intermediate filaments Explain how the ultrastructure of cilia and flagella relate to their functions Describe the structure of a plant cell wall Describe the structure and roles of the extracellular matrix in animal cells Describe four different intercellular junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function All cells are related by their descent from earlier cells For the Discovery Video Cells, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 6.1: To study cells, biologists use microscopes and the tools of biochemistry Though usually too small to be seen by the unaided eye, cells can be complex Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The quality of an image depends on Magnification, the ratio of an object’s image size to its real size Resolution, the measure of the clarity of the image, or the minimum distance of two distinguishable points Contrast, visible differences in parts of the sample Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Fig. 6-2 10 m Human height 1 m Length of some nerve and muscle cells 0.1 m Unaided eye Chicken egg 1 cm Frog egg 1 mm 100 µm Most plant and animal cells Light microscope 10 µm Nucleus Most bacteria 1 µm Mitochondrion Figure 6.2 The size range of cells Smallest bacteria Electron microscope 100 nm Viruses Ribosomes 10 nm Proteins Lipids 1 nm Small molecules 0.1 nm Atoms

LMs can magnify effectively to about 1,000 times the size of the actual specimen Various techniques enhance contrast and enable cell components to be stained or labeled Most subcellular structures, including organelles (membrane-enclosed compartments), are too small to be resolved by an LM Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 6.3a-d Light microscopy TECHNIQUE RESULTS (a) Brightfield (unstained specimen) 50 µm (b) Brightfield (stained specimen) (c) Phase-contrast (d) Differential-interference- contrast (Nomarski) (e) Fluorescence Figure 6.3a-d Light microscopy 50 µm (f) Confocal 50 µm

(a) Brightfield (unstained specimen) Fig. 6-3ab TECHNIQUE RESULTS (a) Brightfield (unstained specimen) 50 µm (b) Brightfield (stained specimen) Figure 6.3 Light microscopy

(d) Differential-interference- contrast (Nomarski) Fig. 6-3cd TECHNIQUE RESULTS (c) Phase-contrast (d) Differential-interference- contrast (Nomarski) Figure 6.3 Light microscopy

50 µm (e) Fluorescence TECHNIQUE RESULTS Figure 6.3 Light microscopy Fig. 6-3e TECHNIQUE RESULTS (e) Fluorescence Figure 6.3 Light microscopy 50 µm

(f) Confocal 50 µm TECHNIQUE RESULTS Figure 6.3 Light microscopy Fig. 6-3f TECHNIQUE RESULTS (f) Confocal Figure 6.3 Light microscopy 50 µm

TEMs are used mainly to study the internal structure of cells Two basic types of electron microscopes (EMs) are used to study subcellular structures Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, providing images that look 3-D Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen TEMs are used mainly to study the internal structure of cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) Transmission electron microscopy (TEM) Longitudinal section of Fig. 6-4 TECHNIQUE RESULTS 1 µm (a) Scanning electron microscopy (SEM) Cilia (b) Transmission electron microscopy (TEM) Longitudinal section of cilium Cross section of cilium 1 µm Figure 6.4 Electron microscopy

Cell Fractionation Cell fractionation takes cells apart and separates the major organelles from one another Ultracentrifuges fractionate cells into their component parts Cell fractionation enables scientists to determine the functions of organelles Biochemistry and cytology help correlate cell function with structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 6.5 Cell fractionation TECHNIQUE Homogenization Tissue cells Homogenate 1,000 g (1,000 times the force of gravity) 10 min Differential centrifugation Supernatant poured into next tube 20,000 g 20 min 80,000 g 60 min Pellet rich in nuclei and cellular debris Figure 6.5 Cell fractionation 150,000 g 3 hr Pellet rich in mitochondria (and chloro- plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes

Differential centrifugation Fig. 6-5a TECHNIQUE Homogenization Figure 6.5 Cell fractionation, part 1 Tissue cells Homogenate Differential centrifugation

(1,000 times the force of gravity) Fig. 6-5b TECHNIQUE (cont.) 1,000 g (1,000 times the force of gravity) 10 min Supernatant poured into next tube 20,000 g 20 min 80,000 g 60 min Pellet rich in nuclei and cellular debris 150,000 g 3 hr Figure 6.5 Cell fractionation, part 2 Pellet rich in mitochondria (and chloro-plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes

Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic Only organisms of the domains Bacteria and Archaea consist of prokaryotic cells Protists, fungi, animals, and plants all consist of eukaryotic cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Comparing Prokaryotic and Eukaryotic Cells Basic features of all cells: Plasma membrane Semifluid substance called cytosol Chromosomes (carry genes) Ribosomes (make proteins) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Prokaryotic cells are characterized by having No nucleus DNA in an unbound region called the nucleoid No membrane-bound organelles Cytoplasm bound by the plasma membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A typical rod-shaped bacterium (b) Fig. 6-6 Fimbriae Nucleoid Ribosomes Plasma membrane Bacterial chromosome Cell wall Capsule 0.5 µm Flagella (a) A typical rod-shaped bacterium (b) A thin section through the bacterium Bacillus coagulans (TEM) Figure 6.6 A prokaryotic cell

Eukaryotic cells are characterized by having DNA in a nucleus that is bounded by a membranous nuclear envelope Membrane-bound organelles Cytoplasm in the region between the plasma membrane and nucleus Eukaryotic cells are generally much larger than prokaryotic cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The plasma membrane is a selective barrier that allows sufficient passage of oxygen, nutrients, and waste to service the volume of every cell The general structure of a biological membrane is a double layer of phospholipids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Carbohydrate side chain Fig. 6-7 (a) TEM of a plasma membrane Outside of cell Inside of cell 0.1 µm Carbohydrate side chain Hydrophilic region Figure 6.7 The plasma membrane Hydrophobic region Hydrophilic region Phospholipid Proteins (b) Structure of the plasma membrane

The surface area to volume ratio of a cell is critical The logistics of carrying out cellular metabolism sets limits on the size of cells The surface area to volume ratio of a cell is critical As the surface area increases by a factor of n2, the volume increases by a factor of n3 Small cells have a greater surface area relative to volume Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Surface area increases while total volume remains constant Fig. 6-8 Surface area increases while total volume remains constant 5 1 1 Total surface area [Sum of the surface areas (height  width) of all boxes sides  number of boxes] 6 150 750 Total volume [height  width  length  number of boxes] Figure 6.8 Geometric relationships between surface area and volume 1 125 125 Surface-to-volume (S-to-V) ratio [surface area ÷ volume] 6 1.2 6

A Panoramic View of the Eukaryotic Cell A eukaryotic cell has internal membranes that partition the cell into organelles Plant and animal cells have most of the same organelles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

ENDOPLASMIC RETICULUM (ER) Nucleolus NUCLEUS Rough ER Smooth ER Fig. 6-9a Nuclear envelope ENDOPLASMIC RETICULUM (ER) Nucleolus NUCLEUS Rough ER Smooth ER Flagellum Chromatin Centrosome Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Figure 6.9 Animal and plant cells—animal cell Ribosomes Microvilli Golgi apparatus Peroxisome Mitochondrion Lysosome

Rough endoplasmic reticulum Fig. 6-9b Nuclear envelope Rough endoplasmic reticulum NUCLEUS Nucleolus Chromatin Smooth endoplasmic reticulum Ribosomes Central vacuole Golgi apparatus Microfilaments Intermediate filaments CYTO- SKELETON Microtubules Figure 6.9 Animal and plant cells—plant cell Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell

Concept 6.3: The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes The nucleus contains most of the DNA in a eukaryotic cell Ribosomes use the information from the DNA to make proteins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Nucleus: Information Central The nucleus contains most of the cell’s genes and is usually the most conspicuous organelle The nuclear envelope encloses the nucleus, separating it from the cytoplasm The nuclear membrane is a double membrane; each membrane consists of a lipid bilayer Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Close-up of nuclear envelope Fig. 6-10 Nucleus 1 µm Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Rough ER Surface of nuclear envelope Ribosome Figure 6.10 The nucleus and its envelope 1 µm 0.25 µm Close-up of nuclear envelope Pore complexes (TEM) Nuclear lamina (TEM)

Pores regulate the entry and exit of molecules from the nucleus The shape of the nucleus is maintained by the nuclear lamina, which is composed of protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chromatin condenses to form discrete chromosomes In the nucleus, DNA and proteins form genetic material called chromatin Chromatin condenses to form discrete chromosomes The nucleolus is located within the nucleus and is the site of ribosomal RNA (rRNA) synthesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Ribosomes: Protein Factories Ribosomes are particles made of ribosomal RNA and protein Ribosomes carry out protein synthesis in two locations: In the cytosol (free ribosomes) On the outside of the endoplasmic reticulum or the nuclear envelope (bound ribosomes) For the Cell Biology Video Staining of Endoplasmic Reticulum, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Endoplasmic reticulum (ER) Fig. 6-11 Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Figure 6.11 Ribosomes Small subunit 0.5 µm TEM showing ER and ribosomes Diagram of a ribosome

Concept 6.4: The endomembrane system regulates protein traffic and performs metabolic functions in the cell Components of the endomembrane system: Nuclear envelope Endoplasmic reticulum Golgi apparatus Lysosomes Vacuoles Plasma membrane These components are either continuous or connected via transfer by vesicles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Endoplasmic Reticulum: Biosynthetic Factory The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells The ER membrane is continuous with the nuclear envelope There are two distinct regions of ER: Smooth ER, which lacks ribosomes Rough ER, with ribosomes studding its surface For the Cell Biology Video ER and Mitochondria in Leaf Cells, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Smooth ER Nuclear envelope Rough ER ER lumen Cisternae Transitional ER Fig. 6-12 Smooth ER Nuclear envelope Rough ER ER lumen Cisternae Transitional ER Ribosomes Transport vesicle 200 nm Smooth ER Rough ER Figure 6.12 Endoplasmic reticulum (ER)

Functions of Smooth ER The smooth ER Synthesizes lipids Metabolizes carbohydrates Detoxifies poison Stores calcium Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Functions of Rough ER The rough ER Has bound ribosomes, which secrete glycoproteins (proteins covalently bonded to carbohydrates) Distributes transport vesicles, proteins surrounded by membranes Is a membrane factory for the cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus consists of flattened membranous sacs called cisternae Functions of the Golgi apparatus: Modifies products of the ER Manufactures certain macromolecules Sorts and packages materials into transport vesicles For the Cell Biology Video ER to Golgi Traffic, go to Animation and Video Files. For the Cell Biology Video Golgi Complex in 3D, go to Animation and Video Files. For the Cell Biology Video Secretion From the Golgi, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(“receiving” side of Golgi apparatus) 0.1 µm Fig. 6-13 cis face (“receiving” side of Golgi apparatus) 0.1 µm Cisternae Figure 6.13 The Golgi apparatus trans face (“shipping” side of Golgi apparatus) TEM of Golgi apparatus

Lysosomes: Digestive Compartments A lysosome is a membranous sac of hydrolytic enzymes that can digest macromolecules Lysosomal enzymes can hydrolyze proteins, fats, polysaccharides, and nucleic acids Animation: Lysosome Formation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A lysosome fuses with the food vacuole and digests the molecules Some types of cell can engulf another cell by phagocytosis; this forms a food vacuole A lysosome fuses with the food vacuole and digests the molecules Lysosomes also use enzymes to recycle the cell’s own organelles and macromolecules, a process called autophagy For the Cell Biology Video Phagocytosis in Action, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

two damaged organelles 1 µm Fig. 6-14 Nucleus 1 µm Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Peroxisome fragment Lysosome Digestive enzymes Lysosome Lysosome Plasma membrane Peroxisome Figure 6.14a Lysosomes Digestion Food vacuole Mitochondrion Digestion Vesicle (a) Phagocytosis (b) Autophagy

Nucleus 1 µm Lysosome Digestive enzymes Lysosome Plasma membrane Fig. 6-14a Nucleus 1 µm Lysosome Digestive enzymes Lysosome Figure 6.14a Lysosome—phagocytosis Plasma membrane Digestion Food vacuole (a) Phagocytosis

two damaged organelles 1 µm Fig. 6-14b Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Peroxisome fragment Lysosome Figure 6.14b Lysosomes—autophagy Peroxisome Mitochondrion Digestion Vesicle (b) Autophagy

Vacuoles: Diverse Maintenance Compartments A plant cell or fungal cell may have one or several vacuoles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Food vacuoles are formed by phagocytosis Contractile vacuoles, found in many freshwater protists, pump excess water out of cells Central vacuoles, found in many mature plant cells, hold organic compounds and water Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast Fig. 6-15 Central vacuole Cytosol Figure 6.15 The plant cell vacuole Nucleus Central vacuole Cell wall Chloroplast 5 µm

The Endomembrane System: A Review The endomembrane system is a complex and dynamic player in the cell’s compartmental organization Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Nucleus Rough ER Smooth ER Plasma membrane Fig. 6-16-1 Nucleus Rough ER Smooth ER Figure 6.16 Review: relationships among organelles of the endomembrane system Plasma membrane

Nucleus Rough ER Smooth ER cis Golgi Plasma membrane trans Golgi Fig. 6-16-2 Nucleus Rough ER Smooth ER cis Golgi Figure 6.16 Review: relationships among organelles of the endomembrane system Plasma membrane trans Golgi

Nucleus Rough ER Smooth ER cis Golgi Plasma membrane trans Golgi Fig. 6-16-3 Nucleus Rough ER Smooth ER cis Golgi Figure 6.16 Review: relationships among organelles of the endomembrane system Plasma membrane trans Golgi

Concept 6.5: Mitochondria and chloroplasts change energy from one form to another Mitochondria are the sites of cellular respiration, a metabolic process that generates ATP Chloroplasts, found in plants and algae, are the sites of photosynthesis Peroxisomes are oxidative organelles For the Cell Biology Video ER and Mitochondria in Leaf Cells, go to Animation and Video Files. For the Cell Biology Video Mitochondria in 3D, go to Animation and Video Files. For the Cell Biology Video Chloroplast Movement, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mitochondria and chloroplasts Are not part of the endomembrane system Have a double membrane Have proteins made by free ribosomes Contain their own DNA Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mitochondria: Chemical Energy Conversion Mitochondria are in nearly all eukaryotic cells They have a smooth outer membrane and an inner membrane folded into cristae The inner membrane creates two compartments: intermembrane space and mitochondrial matrix Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix Cristae present a large surface area for enzymes that synthesize ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

in the mitochondrial matrix Fig. 6-17 Intermembrane space Outer membrane Free ribosomes in the mitochondrial matrix Inner membrane Cristae Figure 6.17 The mitochondrion, site of cellular respiration Matrix 0.1 µm

Chloroplasts: Capture of Light Energy The chloroplast is a member of a family of organelles called plastids Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis Chloroplasts are found in leaves and other green organs of plants and in algae Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chloroplast structure includes: Thylakoids, membranous sacs, stacked to form a granum Stroma, the internal fluid Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Inner and outer membranes Fig. 6-18 Ribosomes Stroma Inner and outer membranes Granum 1 µm Thylakoid Figure 6.18 The chloroplast, site of photosynthesis

Peroxisomes: Oxidation Peroxisomes are specialized metabolic compartments bounded by a single membrane Peroxisomes produce hydrogen peroxide and convert it to water Oxygen is used to break down different types of molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chloroplast Peroxisome Mitochondrion 1 µm Figure 6.19 A peroxisome

Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending throughout the cytoplasm It organizes the cell’s structures and activities, anchoring many organelles It is composed of three types of molecular structures: Microtubules Microfilaments Intermediate filaments For the Cell Biology Video The Cytoskeleton in a Neuron Growth Cone, go to Animation and Video Files For the Cell Biology Video Cytoskeletal Protein Dynamics, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Microtubule Microfilaments 0.25 µm Figure 6.20 The cytoskeleton

Roles of the Cytoskeleton: Support, Motility, and Regulation The cytoskeleton helps to support the cell and maintain its shape It interacts with motor proteins to produce motility Inside the cell, vesicles can travel along “monorails” provided by the cytoskeleton Recent evidence suggests that the cytoskeleton may help regulate biochemical activities Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Receptor for motor protein Fig. 6-21 Vesicle ATP Receptor for motor protein Motor protein (ATP powered) Microtubule of cytoskeleton (a) Microtubule Vesicles 0.25 µm Figure 6.21 Motor proteins and the cytoskeleton (b)

Components of the Cytoskeleton Three main types of fibers make up the cytoskeleton: Microtubules are the thickest of the three components of the cytoskeleton Microfilaments, also called actin filaments, are the thinnest components Intermediate filaments are fibers with diameters in a middle range For the Cell Biology Video Actin Network in Crawling Cells, go to Animation and Video Files. For the Cell Biology Video Actin Visualization in Dendrites, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Table 6-1 Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers Keratin proteins Actin subunit Fibrous subunit (keratins coiled together) 25 nm 7 nm 8–12 nm   Tubulin dimer

10 µm Column of tubulin dimers Tubulin dimer   25 nm Table 6-1a

Table 6-1b 10 µm Table 6-1b Actin subunit 7 nm

Fibrous subunit (keratins coiled together) Table 6-1c 5 µm Table 6-1c Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm

Microtubules Microtubules are hollow rods about 25 nm in diameter and about 200 nm to 25 microns long Functions of microtubules: Shaping the cell Guiding movement of organelles Separating chromosomes during cell division For the Cell Biology Video Transport Along Microtubules, go to Animation and Video Files. For the Cell Biology Video Movement of Organelles in Vivo, go to Animation and Video Files. For the Cell Biology Video Movement of Organelles in Vitro, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Centrosomes and Centrioles In many cells, microtubules grow out from a centrosome near the nucleus The centrosome is a “microtubule-organizing center” In animal cells, the centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Longitudinal section of one centriole Microtubules Cross section Fig. 6-22 Centrosome Microtubule Centrioles 0.25 µm Figure 6.22 Centrosome containing a pair of centrioles Longitudinal section of one centriole Microtubules Cross section of the other centriole

Video: Paramecium Cilia Cilia and Flagella Microtubules control the beating of cilia and flagella, locomotor appendages of some cells Cilia and flagella differ in their beating patterns Video: Chlamydomonas Video: Paramecium Cilia Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Direction of organism’s movement Fig. 6-23 Direction of swimming (a) Motion of flagella 5 µm Direction of organism’s movement Figure 6.23a A comparison of the beating of flagella and cilia—motion of flagella Power stroke Recovery stroke (b) Motion of cilia 15 µm

Cilia and flagella share a common ultrastructure: A core of microtubules sheathed by the plasma membrane A basal body that anchors the cilium or flagellum A motor protein called dynein, which drives the bending movements of a cilium or flagellum Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cross section of cilium Fig. 6-24 Outer microtubule doublet Plasma membrane 0.1 µm Dynein proteins Central microtubule Radial spoke Protein cross-linking outer doublets Microtubules (b) Cross section of cilium Plasma membrane Basal body 0.5 µm (a) Longitudinal section of cilium 0.1 µm Figure 6.24 Ultrastructure of a eukaryotic flagellum or motile cilium Triplet (c) Cross section of basal body

How dynein “walking” moves flagella and cilia: Dynein arms alternately grab, move, and release the outer microtubules Protein cross-links limit sliding Forces exerted by dynein arms cause doublets to curve, bending the cilium or flagellum For the Cell Biology Video Motion of Isolated Flagellum, go to Animation and Video Files. For the Cell Biology Video Flagellum Movement in Swimming Sperm, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 6.25 How dynein “walking” moves flagella and cilia Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement ATP Cross-linking proteins inside outer doublets Anchorage in cell Figure 6.25 How dynein “walking” moves flagella and cilia (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion

(a) Effect of unrestrained dynein movement Fig. 6-25a Microtubule doublets ATP Figure 6.25a How dynein “walking” moves flagella and cilia Dynein protein (a) Effect of unrestrained dynein movement

Cross-linking proteins inside outer doublets Fig. 6-25b ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins Figure 6.25b, c How dynein “walking” moves flagella and cilia 1 3 2 (c) Wavelike motion

Microfilaments (Actin Filaments) Microfilaments are solid rods about 7 nm in diameter, built as a twisted double chain of actin subunits The structural role of microfilaments is to bear tension, resisting pulling forces within the cell They form a 3-D network called the cortex just inside the plasma membrane to help support the cell’s shape Bundles of microfilaments make up the core of microvilli of intestinal cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Microfilaments (actin filaments) Fig. 6-26 Microvillus Plasma membrane Microfilaments (actin filaments) Figure 6.26 A structural role of microfilaments Intermediate filaments 0.25 µm

Microfilaments that function in cellular motility contain the protein myosin in addition to actin In muscle cells, thousands of actin filaments are arranged parallel to one another Thicker filaments composed of myosin interdigitate with the thinner actin fibers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 6.27 Microfilaments and motility Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Figure 6.27 Microfilaments and motility Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells

Muscle cell Actin filament Myosin filament Myosin arm Fig, 6-27a Muscle cell Actin filament Myosin filament Myosin arm Figure 6.27a Microfilaments and motility (a) Myosin motors in muscle cell contraction

Cortex (outer cytoplasm): gel with actin network Fig. 6-27bc Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Figure 6.27b,c Microfilaments and motility Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells

Localized contraction brought about by actin and myosin also drives amoeboid movement Pseudopodia (cellular extensions) extend and contract through the reversible assembly and contraction of actin subunits into microfilaments Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Video: Cytoplasmic Streaming Cytoplasmic streaming is a circular flow of cytoplasm within cells This streaming speeds distribution of materials within the cell In plant cells, actin-myosin interactions and sol-gel transformations drive cytoplasmic streaming Video: Cytoplasmic Streaming Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Intermediate Filaments Intermediate filaments range in diameter from 8–12 nanometers, larger than microfilaments but smaller than microtubules They support cell shape and fix organelles in place Intermediate filaments are more permanent cytoskeleton fixtures than the other two classes For the Cell Biology Video Interphase Microtubule Dynamics, go to Animation and Video Files. For the Cell Biology Video Microtubule Sliding in Flagellum Movement, go to Animation and Video Files. For the Cell Biology Video Microtubule Dynamics, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that are external to the plasma membrane These extracellular structures include: Cell walls of plants The extracellular matrix (ECM) of animal cells Intercellular junctions For the Cell Biology Video Ciliary Motion, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cell Walls of Plants The cell wall is an extracellular structure that distinguishes plant cells from animal cells Prokaryotes, fungi, and some protists also have cell walls The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Plant cell walls may have multiple layers: Primary cell wall: relatively thin and flexible Middle lamella: thin layer between primary walls of adjacent cells Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall Plasmodesmata are channels between adjacent plant cells For the Cell Biology Video E-cadherin Expression, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Secondary cell wall Primary cell wall Middle lamella Central vacuole Fig. 6-28 Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Figure 6.28 Plant cell walls Plasma membrane Plant cell walls Plasmodesmata

RESULTS 10 µm Distribution of cellulose synthase over time Fig. 6-29 RESULTS 10 µm Figure 6.29 What role do microtubules play in orienting deposition of cellulose in cell walls? Distribution of cellulose synthase over time Distribution of microtubules over time

The Extracellular Matrix (ECM) of Animal Cells Animal cells lack cell walls but are covered by an elaborate extracellular matrix (ECM) The ECM is made up of glycoproteins such as collagen, proteoglycans, and fibronectin ECM proteins bind to receptor proteins in the plasma membrane called integrins For the Cell Biology Video Cartoon Model of a Collagen Triple Helix, go to Animation and Video Files. For the Cell Biology Video Staining of the Extracellular Matrix, go to Animation and Video Files. For the Cell Biology Video Fibronectin Fibrils, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 6.30 Extracellular matrix (ECM) of an animal cell, part 1 Collagen Proteoglycan complex Polysaccharide molecule EXTRACELLULAR FLUID Carbo- hydrates Fibronectin Core protein Integrins Proteoglycan molecule Plasma membrane Proteoglycan complex Figure 6.30 Extracellular matrix (ECM) of an animal cell, part 1 Micro- filaments CYTOPLASM

Proteoglycan complex Collagen EXTRACELLULAR FLUID Fibronectin Fig. 6-30a Collagen Proteoglycan complex EXTRACELLULAR FLUID Fibronectin Integrins Plasma membrane Figure 6.30 Extracellular matrix (ECM) of an animal cell, part 1 Micro-filaments CYTOPLASM

Polysaccharide molecule Fig. 6-30b Polysaccharide molecule Carbo-hydrates Core protein Figure 6.30 Extracellular matrix (ECM) of an animal cell, part 2 Proteoglycan molecule Proteoglycan complex

Functions of the ECM: Support Adhesion Movement Regulation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Intercellular Junctions Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact Intercellular junctions facilitate this contact There are several types of intercellular junctions Plasmodesmata Tight junctions Desmosomes Gap junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Plasmodesmata in Plant Cells Plasmodesmata are channels that perforate plant cell walls Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cell walls Interior of cell Interior of cell 0.5 µm Plasmodesmata Fig. 6-31 Cell walls Interior of cell Interior of cell Figure 6.31 Plasmodesmata between plant cells 0.5 µm Plasmodesmata Plasma membranes

Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid Desmosomes (anchoring junctions) fasten cells together into strong sheets Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Animation: Tight Junctions Animation: Desmosomes Animation: Gap Junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Tight junctions prevent fluid from moving across a layer of cells Fig. 6-32 Tight junction Tight junctions prevent fluid from moving across a layer of cells 0.5 µm Tight junction Intermediate filaments Desmosome Desmosome Gap junctions 1 µm Figure 6.32 Intercellular junctions in animal tissues Extracellular matrix Space between cells Gap junction Plasma membranes of adjacent cells 0.1 µm

Tight junctions prevent fluid from moving across a layer of cells Fig. 6-32a Tight junctions prevent fluid from moving across a layer of cells Tight junction Intermediate filaments Desmosome Gap junctions Figure 6.32 Intercellular junctions in animal tissues—tight junctions Extracellular matrix Space between cells Plasma membranes of adjacent cells

Fig. 6-32b Tight junction Figure 6.32 Intercellular junctions in animal tissues—tight junctions 0.5 µm

Fig. 6-32c Figure 6.32 Intercellular junctions in animal tissues—desmosomes junctions Desmosome 1 µm

Fig. 6-32d Gap junction Figure 6.32 Intercellular junctions in animal tissues—gap junctions 0.1 µm

The Cell: A Living Unit Greater Than the Sum of Its Parts Cells rely on the integration of structures and organelles in order to function For example, a macrophage’s ability to destroy bacteria involves the whole cell, coordinating components such as the cytoskeleton, lysosomes, and plasma membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-33 5 µm Figure 6.33 The emergence of cellular functions

Fig. 6-UN1 Cell Component Structure Function Concept 6.3 Nucleus Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit of materials. The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes (ER) Ribosome Two subunits made of ribo- somal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis Concept 6.4 Endoplasmic reticulum Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohy- drates, Ca2+ storage, detoxifica-tion of drugs and poisons The endomembrane system regulates protein traffic and performs metabolic functions in the cell (Nuclear envelope) Rough ER: Aids in synthesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Golgi apparatus Stacks of flattened membranous sacs; has polarity (cis and trans faces) Modification of proteins, carbo- hydrates on proteins, and phos- pholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Lysosome Membranous sac of hydrolytic enzymes (in animal cells) Breakdown of ingested substances, cell macromolecules, and damaged organelles for recycling Vacuole Large membrane-bounded vesicle in plants Digestion, storage, waste disposal, water balance, cell growth, and protection Concept 6.5 Mitochondrion Bounded by double membrane; inner membrane has infoldings (cristae) Cellular respiration Mitochondria and chloro- plasts change energy from one form to another Chloroplast Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Photosynthesis Peroxisome Specialized metabolic compartment bounded by a single membrane Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome

Cell Component Structure Function Fig. 6-UN1a Concept 6.3 Nucleus Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit os materials. The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes (ER) Ribosome Two subunits made of ribo- somal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis

Endoplasmic reticulum Extensive network of membrane-bound tubules and Fig. 6-UN1b Cell Component Structure Function Concept 6.4 Endoplasmic reticulum Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohy- drates, Ca2+ storage, detoxifica- tion of drugs and poisons The endomembrane system regulates protein traffic and performs metabolic functions in the cell (Nuclear envelope) Rough ER: Aids in sythesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Golgi apparatus Stacks of flattened membranous sacs; has polarity (cis and trans faces) Modification of proteins, carbo- hydrates on proteins, and phos- pholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Breakdown of ingested sub- stances cell macromolecules, and damaged organelles for recycling Lysosome Membranous sac of hydrolytic enzymes (in animal cells) Vacuole Large membrane-bounded vesicle in plants Digestion, storage, waste disposal, water balance, cell growth, and protection

Cell Component Structure Function Concept 6.5 Fig. 6-UN1c Mitochondrion Bounded by double membrane; inner membrane has infoldings (cristae) Cellular respiration Mitochondria and chloro- plasts change energy from one form to another Chloroplast Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Photosynthesis Peroxisome Specialized metabolic compartment bounded by a single membrane Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome

Fig. 6-UN2

Fig. 6-UN3

You should now be able to: Distinguish between the following pairs of terms: magnification and resolution; prokaryotic and eukaryotic cell; free and bound ribosomes; smooth and rough ER Describe the structure and function of the components of the endomembrane system Briefly explain the role of mitochondria, chloroplasts, and peroxisomes Describe the functions of the cytoskeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Describe the structure of a plant cell wall Compare the structure and functions of microtubules, microfilaments, and intermediate filaments Explain how the ultrastructure of cilia and flagella relate to their functions Describe the structure of a plant cell wall Describe the structure and roles of the extracellular matrix in animal cells Describe four different intercellular junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings