Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Study of alpha backgrounds using flash ADC in the XMASS experiment Feb. 22nd, 2013 ICRR, Suzuki-Lab. M2 Osamu Takachio.
20/Feb/2004K.Ozone1 TERAS analysis update 1.Compton Spectrum estimation 2.Energy resolution 3.Summary.
1 Satoshi Mihara for the   e  collaboration, muegamma review at PSI, Jan 2003 Photon Detector ICEPP, Univ. of Tokyo Satoshi Mihara.
1 Analysis of TOF data Yordan Karadzhov St.Kliment Ohridski University of Sofia.
Liquid Xenon Gamma Screening Luiz de Viveiros Brown University.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector Part I CEX beam test at piE1 Oct-Dec/03 –Hardware operation status –Analysis.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Calibration of the calorimeter by punch-through muons and cosmic muons Doroshenko M. E391 collaboration.
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
1/41 LXe Beam Test Result CEX beam test 2004 Cryogenic Equipment Preparation Status Liquid Xenon Photon Detector Group.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
26 Jan, MEG Software Status Framework for MEG MC, Unification of LargePrototype/beam test, Schedule and DC reconstruction MEG Software Group.
SLAC, HiRes T-461: “FLASH” part 1 Justin Findlay.
PANDA Anton A. Izotov, Gatchina A.A.Izotov, Gatchina, PANDA Forward TOF Walls. Side TOF walls in dipole Magnet SiPM/PMT187.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Liquid Xenon Calorimeter Analysis R.Sawada on behalf of the MEG LXe analysis group 17/Feb/2009.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
Liquid Xenon Detector and Related Topics
Status Report for KEK-PS E391a KEK IPNS G.Y.Lim 14 April 2003.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
1 NaI calibrationneutron observation NaI calibration and neutron observation during the charge exchange experiment 1.Improving the NaI energy resolution.
1 EMC Trigger Summery from RunII and discussion for RunIII H.Torii, Kyoto Univ. ERT Lvl-1 meeting.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector and Related Topics CEX beam test at piE1 Oct-Dec/03 Detector calibration.
Possible calibration methods for the final LXe calorimeter A. Papa 02/11/
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
Optimization of Analysis Cuts for Oscillation Parameters Andrew Culling, Cambridge University HEP Group.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Forward Carriage Commissioning CLAS Collaboration Meeting 6/19/2015CLAS12 CalCom Status Update1 ECAL PCAL FTOF Panel 1A FTOF Panel 1B Detector Status PMT.
PMT Calibration R.Sawada 7/Jan/2007. Time calibration Method was talked at the previous meeting. The problems which was shown before were because I used.
BESIII EMC Simulation & Reconstruction He Miao
Fiber target simulation for S-2S experiment Toshiyuki Gogami 2015/10/15.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
Basic Measurement of the Hamamatsu 10 inch PMT at –40 degree –40 degree Hiroko Miyamoto Dept. of Physics CHIBA University The Uniformity measurement of.
CALICE, CERN June 29, 2004J. Zálešák, APDs for tileHCAL1 APDs for tileHCAL MiniCal studies with APDs in e-test beam J. Zálešák, Prague with different preamplifiers.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
PMT time offset calibration (not completed) R.Sawada 27/Dec/2007.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, MEG Collaboration meeting Feb. 10th, 2004.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, The University of Tokyo MEG VRVS meeting Jan. 20th, 2004.
By: Daniel Coelho Matthew Szydagis Robert Svoboda Improving Electron / Gamma Separation LBNE Software Fermilab, ILFebruary 1, 2013.
g beam test of the Liquid Xe calorimeter for the MEG experiment
Status of Electronics Simulation and Energy Resoluton Estimation
Tracking(1) Kp2 decay-in-flight BG simulation
The Electromagnetic calorimeter of the MEG Experiment
Update of the Fiducial calibration study in 2km WC detector
Liquid Xenon Detector for the MEG Experiment
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Stato del calorimetro elettromagnetico
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Status of Neutron flux Analysis in KIMS experiment
G0 Beam Polarization T. Horn, D. Gaskell Jefferson Lab
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
Performance test of a RICH with time-of-flight information
Presentation transcript:

Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration

Energy Resolution

3 Data Condition #6628-#6671with paraffin shield Collimator size Xenon 9.5 cm NaI 11.5 cm FSH52 DAC value (beam intensity) 125 PMT gain1e6

4 Event Selection and Q.E. correction Q.E. estimated from liquid data was used for each PMT. & (NaI sum)<105 This cut is not important, because resolution doesn’t change with this cut.

5 5th step (depth correction) 3077 events (2059 events Qsum>25000) 3077 events (2059 events Qsum>25000) FWHM = 4.5 ± 0.4 %

6 Masking effect ➀ without masking ➁ mask: edge of front ➂ mask: edge of front top,bottom ➂ mask: edge of front top,bottom ➃ mask: edge of front top,bottom right,left ➃ mask: edge of front top,bottom right,left gamma Some PMTs are masked to simulate the curved shape of the final detector. Curved shape is corresponding between ➀ and ➂ (it depends on how to put PMTs). FWHM sigma(right) FWHM sigma(right)

7 Masking effect 2 mask ➄ mask ➅ mask ➄ mask ➅ Is symmetry important?

8 Energy resolution (83,129 MeV) #689[6-7], trigger:S1*Xe FWHM: 4.5 ± 1.8 % σ(right): 1.0 ± 0.2 % FWHM: 4.5 ± 1.8 % σ(right): 1.0 ± 0.2 % FWHM: 5.0 ± 0.6 % σ(right): 1.16 ± 0.06 % FWHM: 5.0 ± 0.6 % σ(right): 1.16 ± 0.06 % What are these 2 events? 83MeV 129MeV

9 High energy events Cosmic Ray? Miss reconstructed position ? (due to using simple average) Miss reconstructed position ? (due to using simple average)

10 Energy and Resolution PSI 2003 TERAS 2003 alpha PSI 2003 TERAS 2003 alpha Resolution(right) becomes better as a function of gamma energy. * Error bar shows only fitting error.

Timing Resolution

12 Data Condition #699[4-6],7045without Amplifier Collimator size Xenon 9.5 cm NaI 11.5 cm FSH52 DAC value (beam intensity) 125 PMT gain~5e6 added

13 Algorithm Timing correction of each PMT ☀ time walk ☀ vertex (x_average,y_average,sigma2) Timing correction of each PMT ☀ time walk ☀ vertex (x_average,y_average,sigma2) Timing of each PMT is shifted so that mean become 0. Taking the average with ☀ software threshold : 50 nphe ☀ weight : sqrt(ADC) ☀ masked if (TDC - mean) > 10nsec Taking the average with ☀ software threshold : 50 nphe ☀ weight : sqrt(ADC) ☀ masked if (TDC - mean) > 10nsec TDC’(i) = TDC(i) - TDC(TC) added

14 Timing resolution (right - left) Resolution is 65 ± 2 psec (5e6 gain) ☀ Depth cut : Nfpmt(0.5)>4 ☀ No impinging point cut is applied. ☀ Xe energy cut for selecting 55MeV gamma is applied. ☀ Depth cut : Nfpmt(0.5)>4 ☀ No impinging point cut is applied. ☀ Xe energy cut for selecting 55MeV gamma is applied. # of eventsresolution (σ) 55 MeV w/ depth cut psec 55 MeV w/o depth cut psec 83 MeV w/ depth cut psec 83 MeV w/o depth cut psec

15 Timing resolution (Xe - TC) 3:00 9:00 4:00 12:00 cut# of eventsresolution (σ) w/ Nfpmt(0.5>4 w/ sigma2< psec w/ Nfpmt(0.5)> psec w/o depth cut psec Resolution includes ☀ resolution of TC ~ 60psec ☀ target size ~ 60 psec but it is still worse than “r-l analysis”. Resolution includes ☀ resolution of TC ~ 60psec ☀ target size ~ 60 psec but it is still worse than “r-l analysis”. due to temperature of delay cable ? Time difference is shifting. corrected with linear function.

16 Masking effect (Timing) gamma # of photo- electrons w/ depth cut (R-L) w/o depth cut (R-L) w/o mask30,00065 psec73 psec mask: L,R18,83075 psec86 psec mask: L,R,T,BT 7, psec152 psec mask: ADC#>127 23,02473 psec80 psec

Summary Energy resolution of 83,129MeV gamma is estimated. Resolution becomes better as a function of gamma energy. Timing resolution is estimated with more statistics. Depth cut which I applied is strict. I will search optimum depth cut for sensitivity. Energy resolution of 83,129MeV gamma is estimated. Resolution becomes better as a function of gamma energy. Timing resolution is estimated with more statistics. Depth cut which I applied is strict. I will search optimum depth cut for sensitivity.

18

19 Number of Events # of events (Qsum>25000) FWHM [%] all367k step1 Mainly,removal pedestal events. 267k step2removal 83 MeV82k(34k)8.5 ± 0.3 step3x-y selection7160(4223)7.9 ± 0.9 step4depth cut3077(2059)4.9 ± 0.4 step5depth correctionsame4.5 ± 0.4

20 cut & correction Nfpmt(0.5) is used as depth parameter for correction and cut. Nfpmt : number of PMTs which occupy the half of Qfront. sigma2<90 is also applied to remove very deep events. MC Nfpmt(0.5)>4 rejected accepted

21 Position dependence of resolution FWHM [%] center of the detector center of F14 center of F21 center of F20 center of F15 There is no positioin dependence of resolution. 4.3±1.04.8±0.44.6± ±0.64.5±0.34.5± ±0.95.0±0.55.0±1.6

22 Depth dependence of resolution FWHM is constant if depth > ~4cm Resolution is estimated with slicing with depth parameter. Correspondence of depth parameter and the depth is calculated from MC. Resolution is estimated with slicing with depth parameter. Correspondence of depth parameter and the depth is calculated from MC.

23 Timing Counter (TC) Timing resolution of the timing counter is 60 psec ☀ Time walk correction. ☀ virtex correction with Nphe(light)/Nphe(right) ☀ Time walk correction. ☀ virtex correction with Nphe(light)/Nphe(right) ☀ 2 × 5cm × 5cm × 1cm BC404 ☀ 4 × 1-inch finemesh type PMTs ☀ 5cm × 5cm × 0.6 cm lead target ☀ 2 × 5cm × 5cm × 1cm BC404 ☀ 4 × 1-inch finemesh type PMTs ☀ 5cm × 5cm × 0.6 cm lead target

24 Timing resolution with 1e6 gain + Amplifier gain beam intensity (FSH52 DAC) time resolution (right - left) [psec] time resolution (Xenon - tc) [psec] w/o Amp1e ± ± 11 w/ Yuri’s Amp1e ± 6295 ± 6 w/ Lecce Amp1e ± 6300 ± 7 w/o Amp5e ± 6256 ± 7 Time resolution using 8 PMTs which is applied amplifiers. Amplifier improve the resolution at 1e6 gain.

25 1st Step (remove pedestal events) 367k events 267k events Mainly, subtraction of pedestal events.

26 2nd Step (83 MeV gamma rejection) 82k events (34k events Qsum>25000) 82k events (34k events Qsum>25000) FWHM = 8.5 ± 0.3 % & (NaI sum)<105

27 3rd step (position selection) 7160 events (4223 events Qsum>25000) 7160 events (4223 events Qsum>25000) FWHM = 7.9 ± 0.9 %

28 4th step (depth selection) FWHM = 4.9 ± 0.4 % 3077 events (2059 events Qsum>25000) 3077 events (2059 events Qsum>25000)