HELMHOLTZ GEMEINSCHAFT VUV FEL EO systems at the DESY VUV-FEL Stefan Düsterer for the VUV - FEL Team F. Van den Berghe, J. Feldhaus, J. Hauschildt, R.

Slides:



Advertisements
Similar presentations
Patrick Krejcik May 3-6, 2004 Patrick Krejcik R. Akre, P. Emma, M. Hogan, (SLAC), H. Schlarb, R. Ischebeck (DESY), P. Muggli.
Advertisements

Single-Shot Measurement of Femtosecond Electron Bunches at SLAC Adrian L Cavalieri, David M Fritz, SooHeyong Lee, Philip H Bucksbaum, David A Reis (FOCUS.
Strecher, compressor and time structure manipulation
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
EOS at SPPS Adrian L Cavalieri, David M Fritz, SooHeyong Lee, Philip H Bucksbaum, David A Reis (FOCUS Center, University of Michigan) Holger Schlarb (DESY)
– A robust bunch length monitor Comissioning and first results of a possible standard diagnostic tool Laurens Wissmann Bernd Steffen, Jonas Breunlin.
Selection of SiC for the electro-optic measurement of short electron bunches K.S. Sullivan & N.I. Agladze Short electron bunches are needed for dense collisions.
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
R. Akre, P. Emma, P. Krejcik LCLS April 29, 2004 LCLS RF Stability Requirements LCLS Requirements The SLAC Linac.
Pump Probe Measurements of Femto-second Pulses By David Baxter.
Bunch Length Measurements at the Swiss Light Source (SLS) Linac at the PSI using Electro-Optical Sampling A.Winter, Aachen University and DESY Miniworkshop.
HELMHOLTZ GEMEINSCHAFT VUV FEL. HELMHOLTZ GEMEINSCHAFT VUV FEL Streak camera monitoring of the arrival timing jitter Stefan Düsterer for the VUV - FEL.
R. Akre XFEL Short Bunch Measurement and July 26, 2004 LCLS Drive Laser Timing Stability Measurements XFEL Short Bunch Measurement.
D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Pump-Probe Instrument D. M. Fritz Pump-probe Experiments System.
Electro-Optic Beam Diagnostic at BNL DUV-FEL
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
John Arthur LCLS Diagnostics and Commissioning September 22, 2004 Summary of Related Topics from the Miniworkshop on.
Stefan Simrock 3 rd LC School, Oak Brook, IL, USA, 2008, Radio Frequency Systems 1 Timing and Synchronization S. Simrock and Axel Winter DESY, Hamburg,
Simulation studies of the e-beams for Renkai Li and Juhao Wu 5/20/2014 ALD Review.
Space-time analogy True for all pulse/beam shapes Paraxial approximation (use of Fourier transforms) Gaussian beams (q parameters and matrices) Geometric.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
Analysis of Phase Noise in a fiber-optic link
Beam Diagnostics Collaboration Meeting March 18 th 2015 at Australian Synchrotron Mario Ferianis – Elettra.
Electro-optic Effect made simple? David A. Reis FOCUS Center and Department of Physics, University. of Michigan.
Low Emittance RF Gun Developments for PAL-XFEL
S. De Santis “Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing” - BIW 2004 May, 5th Measurement of the Beam Longitudinal.
Femto-second Measurements of Semiconductor Laser Diodes David Baxter
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Distortion of single-shot EO sampling techniques.
EO sampling technique for femtosecond beam characterization
Electro-Optic Bunch Profile Monitors DA Walsh, SP Jamison, WA Gillespie, MA Tyrk, R Pan, T Lefevre.
LCLS_II High Rep Rate Operation and Femtosecond Timing J. Frisch 7/22/15.
Class overview: Brief review of physical optics, wave propagation, interference, diffraction, and polarization Introduction to Integrated optics and integrated.
Pulse Shaping with MIIPS SASS 8/22/2012 David Nicholson.
Design of an Electro-Optic Bunch Length Monitor for the CERN-CTF3 probe beam R. Pan, T. Lefevre, S.P. Jamison, W.A. Gillespie CERN STFC Daresbury Laboratory.
Laser System Upgrade Overview
The ORS at FLASH and sFLASH Peter van der Meulen Stockholm University Div. Molecular Physics FLS2010, March 1-5, 2010, 48 th ICFA Advanced Beam Dynamics.
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
Electro-optic Longitudinal Profile Diagnostics S P Jamison, Accelerator Science and Technology Centre, STFC Daresbury Laboratory S.P. Jamison, Daresbury.
Space-time analogy True for all pulse/beam shapes
February 17-18, 2010 R&D ERL Brian Sheehy R&D ERL Laser and laser light transport Brian Sheehy February 17-18, 2010 Laser and Laser Light Transport.
Single-shot, Sub-picosecond, EO bunch measurements at FELIX Steven Jamison, Giel Berden, Allan MacLeod Allan Gillespie, Jingling Shen, Dino Jaroszynski,
Transverse Coherent Transition Radiation (TCTR) Experiment First Ideas for a Measurement Setup Max-Planck-Institute for Physics Munich Olaf Reimann, Scott.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
LASER SYSTEM STATUS G.Gatti, A. Ghigo, C.Vicario, P.Musumeci, M. Petrarca, S. Cialdi, D. Filippetto REVIEW COMMITTEE 16/11/05.
Status of the SPARC laser and “dazzler” experiments
Bernd Steffen, DESY
Summary of SPARC first-phase operations
Electro-Optic Bunch Profile Monitor for the CERN-CTF3 probe beam
Laser System Upgrade Overview
Electro-optic characterisation of bunch longitudinal profile
FCC ee Instrumentation
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
FOCUSING OPTICS Spherical lenses Achromatic doublets Parabolic mirrors.
Principle of Mode Locking
Kansas Light Source Upgrade
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Kansas Light Source Laser System J. R. Macdonald Laboratory
LCLS RF Stability Requirements
LASER SYSTEM STATUS G.Gatti , A. Ghigo , C.Vicario , P.Musumeci ,
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Breakout Sessions SC1/SC2 – Accelerator Physics
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Injector Drive Laser Technical Status
Electro-Optical Modulation Nonlinear Optics Techniques Self Focussing
Presentation transcript:

HELMHOLTZ GEMEINSCHAFT VUV FEL EO systems at the DESY VUV-FEL Stefan Düsterer for the VUV - FEL Team F. Van den Berghe, J. Feldhaus, J. Hauschildt, R. Ischebeck, K. Ludwig, H. Schlarb, B. Schmidt, S. Schmüser, S. Simrock, B. Steffen, A. Winter and all the others Adrian Cavalieri, David Fritz, Soo-Heyong Lee, David Reis (Michigan University Ann Arbor, Michigan)

HELMHOLTZ GEMEINSCHAFT VUV FEL The 2 EOS systems Experiments EOS „Electro Optical Sampling“ chirped laser pulseEOS „Electro Optical Sampling“ chirped laser pulse TiSa fs-oscillator TEO „Timing Electro Optical sampling“ 45° - geometryTEO „Timing Electro Optical sampling“ 45° - geometry pump-probe fs-laser for FEL-experiments

HELMHOLTZ GEMEINSCHAFT VUV FEL T iming EO Timing monitor for the FEL-optical pump-probe Experiments optimized for electron bunch ARRIVAL TIME measurements part of the pump-probe laser system final goal:final goal: provide timing data to users delay delay + jitter

HELMHOLTZ GEMEINSCHAFT VUV FEL Layout: pump-probe experiments optical laser FEL pulse Optical pulse to TEO

HELMHOLTZ GEMEINSCHAFT VUV FEL TEO Pockels cell 50 % beam splitter

HELMHOLTZ GEMEINSCHAFT VUV FEL The laser hutch overview picture - CDR layout TEO

HELMHOLTZ GEMEINSCHAFT VUV FEL The TEO layout - in the laser hutch laser hutch - CDR layout

HELMHOLTZ GEMEINSCHAFT VUV FEL The TEO layout - in the tunnel tunnel - CDR layout High degree of automation 19 motors 6 cameras 3 photo diodes / PMTs 3 photo diodes / PMTs every important parameter can be controlled and changed from the control room - fully integrated in the control system - High degree of automation 19 motors 6 cameras 3 photo diodes / PMTs 3 photo diodes / PMTs every important parameter can be controlled and changed from the control room - fully integrated in the control system -

HELMHOLTZ GEMEINSCHAFT VUV FEL TEO - first steps... Laser hutch Accelerator tunnel

HELMHOLTZ GEMEINSCHAFT VUV FEL TEO - simulations critical parts like the compressor the phase-shaper the imaging of the crystal the interaction between laser and el. field in the crystal were simulated in order to optimize TEOs performance

HELMHOLTZ GEMEINSCHAFT VUV FEL introducing LAB II simulation software Th. Feurer and group Simulation of fs-pulse propagation by Th. Feurer and group (Jena / MIT /Bern) time - frequency domain (no spatial calculations) linear and nonlinear effects / three wave mixing various materials compressors, strechers and phase shaper auto- / cross-correlation, FROGs and much much more Based on LabView Free download at

HELMHOLTZ GEMEINSCHAFT VUV FEL Lab II - simulation of TEO ~ 70 fs FWHM

HELMHOLTZ GEMEINSCHAFT VUV FEL The compressor compensate for dispersion induced fs-pulse broadening by the 170 m glass fiber compensates the huge Group Velocity Dispersion (GVD) (second order deriv. of phase) BUT induces third (and higher) order phase distortions (TOD) optimization dilemmabandwidth transmission (constant grating size) induced TOD highly dispersive gratings (1800 lines / mm)  low dispersive gratings (1200 lines / mm)  TOD induced by fiber: fs 3 / TOD by compressor: fs 3

HELMHOLTZ GEMEINSCHAFT VUV FEL the phase shaper - actual design Geometry is entirely on-axis. ( design by G. Stobrawa, U. Jena) folding mirror algorithms for LCD-matrix - start with genetic algorithm (Soo / Michigan) -next step: parameterization with to Taylor coefficients. of the phase (about 100 times faster - Jena) algorithms for LCD-matrix - start with genetic algorithm (Soo / Michigan) -next step: parameterization with to Taylor coefficients. of the phase (about 100 times faster - Jena)

HELMHOLTZ GEMEINSCHAFT VUV FEL TEO - imaging ray tracing well below diffraction limit wave front propagation 1:2 imaging using achromatic lenses Tilted object → tilted camera diffraction limited resolution < 10 µm for 2 mm field of view

HELMHOLTZ GEMEINSCHAFT VUV FEL 0.5mm 10mm The wedged crystal (ZnTe) SignalTemporal resolution Thick crystal  Thin crystal  online Change sensitivity vs. temporal resolution online

HELMHOLTZ GEMEINSCHAFT VUV FEL Wedged crystal

HELMHOLTZ GEMEINSCHAFT VUV FEL Simulation of EO-Response Function First reflection of THz field e-beam Linear diode array 1000 pixel incidence angle of laser freq. dependent refraction freq. dependent EO-coeff. group velocity mismatch multiple reflection

HELMHOLTZ GEMEINSCHAFT VUV FEL Simulation of EO-Response Function T=-50 fs 20% shorter bunch 5% more charge origin 100 pixel 17%

HELMHOLTZ GEMEINSCHAFT VUV FEL Challenge: detection at 1 MHz ELIS photo-diode array (silicon video inc.):  Pixels: 1024 / 8 µm  Readout: 30 MHz  1000 pixel -> 30 µs  128 pixel -> 4 µs  Gating 15 ns  Low cost ns 15 ns

HELMHOLTZ GEMEINSCHAFT VUV FEL Differences between TEO and SPPS  Pockels cell behind fs-oscillator ~ 100% of laser power available  all reflective shaper  70 fs pulses (FWHM) at crystal are possible 60 nm transmission through the whole system  jitter: no regenerative laser amplifier - but larger distance to experiment  gating by detection (line camera) wedge crystal  wedge crystal – change temporal resolution continuously and online  More than 20 motors / 6 cameras – TEO can be entirely remote controlled

HELMHOLTZ GEMEINSCHAFT VUV FEL EOS Timing monitor for the FEL-optical pump-probe Experiments Flexible EOS system to test various concepts scanning EO chirped pulse EO Electron bunch diagnostic longitudinal bunch structure Sub 15 fs Femtolaser Located in container close to the accelerator 15 m beamline (future upgrade: amplified pulse / single shot correlation) Container electrically isolated / RF shielding Temperature stabilized RF cable Beamline for CTR -> EOS in container ( test of crystals …)

HELMHOLTZ GEMEINSCHAFT VUV FEL EOS - Setup To spectrometer OTR ZnTe crystal 300 µm electrons TiSa fs pulse 65 nm FWHM / 15 fs

HELMHOLTZ GEMEINSCHAFT VUV FEL Conclusion 2 EOS systems2 EOS systems –to test different EO schemes –Cross-check (Goal) Measure at 1 MHz – each pulse –Machine diagnostics –Essential for user pump-probe experiments TEO –50 fs arrival time monitor –Highly automated (standard diagnostics) EOS –100 fs longitudinal electron bunch resolution

HELMHOLTZ GEMEINSCHAFT VUV FEL Dies ist eine schöne vorlage...

HELMHOLTZ GEMEINSCHAFT VUV FEL TEO in numbers TEO in numbers shaper: 640 element LCD matrix, 1800 l/mm grating, 500 mm focal distance wavelength transmission: nm TOD compensation = fs 3compressor: 1500 l/mm gratings / 140 mm wide / 1.2m separation wavelength transmission: nm TOD induced = fs 3fiber: 170 m long Single mode polarization maintaining TOD induced = fs 3 cutoff wavelength < 780 nm

HELMHOLTZ GEMEINSCHAFT VUV FEL ErEr Principal of electro-optical sampling PD Sampling: simple analysis balanced detector allows high sensitivity good synchronization required multi-shot method arbitrary time window possible ErEr Principal of temporal- wavelength correlation camera Chirp laser method: single shot method some more effort for laser and laser diagnostics required resolution due to laser ~ √t 0 · t chirp time window ~ 1-20ps

HELMHOLTZ GEMEINSCHAFT VUV FEL Space -time correlation method Timing o.k. EO-Crystal v ErEr camera v laser is „late“ v laser is „early“ laser

HELMHOLTZ GEMEINSCHAFT VUV FEL the phase shaper - principle actual shaper

HELMHOLTZ GEMEINSCHAFT VUV FEL Time structure and energy budget Ti:Sa oscillator pulses fiber 108 MHz OPA SHG 10% PM 0.01% Pockels cell 1 MHz Rotator SHG 92% 5% 91% stretcher SLM ~ 800 ns  t = 1600 ns 9.3 ns 1 MHz tunnel  t = 0 ns gated detector EO-crystal e-bunch 0.6% 10% 90% X % ~ 800 ns ~ 1600 ns Synchronized to electron beam at EO-crystal Synchronized to VUV-FEL beam at sample Pulse for SHG sampling the fiber length Pulse for SHG for reference 50% 92% 130 pJ 2.5 nJ 90% 10% 2*40 pJ 15 pJ 98% Feedback Fiber length Pump-probe experiment PM