Video Video.

Slides:



Advertisements
Similar presentations
Chapter 8-Video.
Advertisements

Chapter 8-Video.
Chapter 6 Review.
Motivation Application driven -- VoD, Information on Demand (WWW), education, telemedicine, videoconference, videophone Storage capacity Large capacity.
Fundamental concepts in video
Video enhances, dramatizes, and gives impact to your multimedia application. Your audience will better understand the message of your application.
SCA Introduction to Multimedia
SWE 423: Multimedia Systems Chapter 5: Video Technology (1)
Comp :: Fall 2003 Video As A Datatype Ketan Mayer-Patel.
Sample rate conversion At times, it will be necessary to convert the sampling rate in a source signal to some other sampling rate Consider converting from.
Fundamentals of Multimedia Chapter 5 Fundamental Concepts in Video Ze-Nian Li and Mark S. Drew 건국대학교 인터넷미디어공학부 임 창 훈.
Light to Electricity: lines begin and end in black (low signal level) called Blanking between blanking is the active video scanning is precisely controlled.
CSc 461/561 CSc 461/561 Multimedia Systems Part A: 3. Video.
Color of (digital image) Raed S. Rasheed Agenda Color. Color Image. Color Models – RGB color model. – CMYK color model. – HSV and HSL color model.
Image Formation and Digital Video
Digital Video An Introduction to the Digital Signal File Formats Acquisition IEEE 1394.
Visual Representation of Information
Video Media Department of Computer Education KMUTNB.
5.1 Video Concept Video is an excellent tool for delivering multimedia. Video places the highest performance demand on computer and its memory and storage.
Digital Images The digital representation of visual information.
CS 1308 Computer Literacy and the Internet. Creating Digital Pictures  A traditional photograph is an analog representation of an image.  Digitizing.
Lecture 03 Fasih ur Rehman
Klara Nahrstedt Spring 2009
Digital Video and Multimedia If images can portray a powerful message then video (as a series of related images) is a serious consideration for any multimedia.
CS Spring 2014 CS 414 – Multimedia Systems Design Lecture 5 – Digital Video Representation Klara Nahrstedt Spring 2014.
Multimedia Data Video Compression The MPEG-1 Standard
Video Basics. Agenda Digital Video Compressing Video Audio Video Encoding in tools.
Fundamentals of video.
Introduction to Interactive Media 11: Video in Interactive Digital Media.
Lab #5-6 Follow-Up: More Python; Images Images ● A signal (e.g. sound, temperature infrared sensor reading) is a single (one- dimensional) quantity that.
Multimedia Basics (2) Hongli luo Fall 2010 CEIT, IPFW.
Multimedia I (Audio/Video Data) CS423, Fall 2007 Klara Nahrstedt/Sam King 9/19/20151.
Copyright 1998, S.D. Personick. All Rights Reserved1 Telecommunications Networking I Lectures 2 & 3 Representing Information as a Signal.
Video and Streaming Media Andy Dozier. Approach Video Standards – Analog Video – Digital Video Video Quality Parameters – Frame Rate – Color Depth – Resolution.
© 2011 The McGraw-Hill Companies, Inc. All rights reserved Chapter 6: Video.
 Refers to sampling the gray/color level in the picture at MXN (M number of rows and N number of columns )array of points.  Once points are sampled,
© 1999 Rochester Institute of Technology Introduction to Digital Imaging.
ITBIS351 Multimedia Systems and Hypermedia Yaqoob Al-Slaise
1 Multimedia Information Representation. 2 Analog Signals  Fourier transform and analysis Analog signal and frequency components Signal bandwidth and.
DIGITAL Video. Video Creation Video captures the real world therefore video cannot be created in the same sense that images can be created video must.
Concepts of Multimedia Processing and Transmission IT 481, Lecture 3 Dennis McCaughey, Ph.D. 5 February, 2007.
Video.
Overview of Graphics Systems. Cathode-ray Tube (CRT) - colors are represented using Red, Green, and Blue components - the CRT has a mechanism for.
Chapter 2 : Business Information Business Data Communications, 6e.
1 Chapter 2: Color Basics. 2 What is light?  EM wave, radiation  Visible light has a spectrum wavelength from 400 – 780 nm.  Light can be composed.
Chapter 1. Introduction. Goals of Image Processing “One picture is worth more than a thousand words” 1.Improvement of pictorial information for human.
Rick Parent - CIS681 Background Perception Display Considerations Video Technology.
Rick Parent - CIS681 Background Perception Display Considerations Film and Video, Analog and Digital Technology.
Ch5: TELEVISION.
What Exactly is Television?  A process of transmitting images through a signal from one place or another.
Lecture 7: Intro to Computer Graphics. Remember…… DIGITAL - Digital means discrete. DIGITAL - Digital means discrete. Digital representation is comprised.
DIGITAL IMAGE. Basic Image Concepts An image is a spatial representation of an object An image can be thought of as a function with resulting values of.
Digital Video Digital video is basically a sequence of digital images  Processing of digital video has much in common with digital image processing First.
IT2002 ATI Naiwala 1 By ATI Naiwala. IT2002 ATI Naiwala Combination of time Variant Image and Sound – Most realistic media Dynamic Huge data size(Very.
IntroductiontMyn1 Introduction MPEG, Moving Picture Experts Group was started in 1988 as a working group within ISO/IEC with the aim of defining standards.
C HAPTER 5: F UNDAMENTAL C ONCEPTS IN V IDEO 1. T YPES OF V IDEO S IGNALS Component video Higher-end video systems make use of three separate video signals.
1 Basics of Video Multimedia Systems (Module 1 Lesson 3) Summary: r Types of Video r Analog vs. Digital Video r Digital Video m Chroma Sub-sampling m HDTV.
Video Concepts and Techniques 1 SAMARTH COLLEGE OF ENGINEERING &TECHNOLOLOGY DEPARTMENT OF ELECTRONIC & COMMUNICATION ENGINEERING 5th semester (E&C) Subject.
Video System Dr inż. Zdzisław Pólkowski Badea George-Cosmin.
Digital Video Representation Subject : Audio And Video Systems Name : Makwana Gaurav Er no.: : Class : Electronics & Communication.
Fundamental concepts in video
AMCOM Digital Archive Design Review - Week 4.
CSI-447 : Multimedia Systems
Understanding Analogue and Digital Video Lesson 1
Background Perception Display Considerations Video Technology.
"Digital Media Primer" Yue-Ling Wong, Copyright (c)2013 by Pearson Education, Inc. All rights reserved.
Chapter 6: Video.
Digital Image Processing
Digital Image Processing
Faculty of Science Information Technology Safeen Hasan Assist Lecturer
Presentation transcript:

Video Video

Introduction Video Signal Representation Color Encoding Computer Video Format Video

Video is the technology of electronically capturing, recording, processing, storing, transmitting, and reconstructing a sequence of still images representing scenes in motion. The term video (from Latin: "I see") commonly refers to several storage formats for moving eye pictures: digital video formats, including DVD, QuickTime, and MPEG-4; and analog videotapes, including VHS and Betamax. Video can be recorded and transmitted in various physical media: in magnetic tape when recorded as PAL or NTSC electric signals by video cameras, or in MPEG-4 or DV digital media when recorded by digital cameras. Video

Basic Concepts (Video Representation) Human eye views video immanent properties of the eye determine essential conditions related to video systems. Video signal representation consists of 3 aspects: Visual Representation objective is to offer the viewer a sense of presence in the scene and of participation in the events portrayed. Transmission Video signals are transmitted to the receiver through a single television channel Digitalization analog to digital conversion, sampling of gray(color) level, quantization. Video

aspect ratio Aspect ratio describes the dimensions of video screens and video picture elements. All popular video formats are rectilinear, and so can be described by a ratio between width and height. The screen aspect ratio of a traditional television screen is 4:3, or about 1.33:1. High definition televisions use an aspect ratio of 16:9, or about 1.78:1. Video

Visual Representation The televised image should convey the spatial and temporal content of the scene Vertical detail and viewing distance Aspect ratio: ratio of picture width and height (4/3 = 1.33 is the conventional aspect ratio). Viewing angle = viewing distance/picture height Horizontal detail and picture width Picture width (conventional TV service ) - 4/3 * picture height Total detail content of the image Number of pixels presented separately in the picture height = vertical resolution Number of pixels in the picture width = horizontal resolution*aspect ratio product equals total number of picture elements in the image. Video

Visual Representation Perception of Depth In natural vision, this is determined by angular separation of images received by the two eyes of the viewer In the flat image of TV, focal length of lenses and changes in depth of focus in a camera influence depth perception. Luminance and Chrominance Color-vision - achieved through 3 signals, proportional to the relative intensities of RED, GREEN and BLUE. Color encoding during transmission uses one LUMINANCE and two CHROMINANCE signals Temporal Aspect of Resolution Motion resolution is a rapid succession of slightly different frames. For visual reality, repetition rate must be high enough (a) to guarantee smooth motion and (b) persistence of vision extends over interval between flashes(light cutoff b/w frames). Video

focal length of lenses Video

Chrominance Chrominance (chroma for short), is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B'–Y' (blue – luma) and V = R'–Y' (red – luma). Each of these difference components may have scale factors and offsets applied to them, as specified by the applicable video standard. Video

Luma luma represents the brightness in an image (the "black and white" or achromatic portion of the image). Luma is typically paired with chroma. Luma represents the achromatic image without any color, while the chroma components represent the color information. Video

Visual Representation Continuity of motion Motion continuity is achieved at a minimal 15 frames per second; is good at 30 frames/sec; some technologies allow 60 frames/sec. NTSC standard provides 30 frames/sec - 29.97 Hz repetition rate. PAL standard provides 25 frames/sec with 25Hz repetition rate. Flicker effect Flicker effect is a periodic fluctuation of brightness perception. To avoid this effect, we need 50 refresh cycles/sec. Display devices have a display refresh buffer for this. Temporal aspect of video bandwidth depends on rate of the visual system to scan pixels and on human eye scanning capabilities. Video

Transmission (NTSC) Video bandwidth is computed as follows 700/2 pixels per line X 525 lines per picture X 30 pictures per second Visible number of lines is 480. Intermediate delay between frames is 1000ms/30fps = 33.3ms Display time per line is 33.3ms/525 lines = 63.4 microseconds The transmitted signal is a composite signal consists of 4.2Mhz for the basic signal and 5Mhz for the color, intensity and synchronization information. Video

Color Encoding A camera creates three signals RGB (red, green and blue) For transmission of the visual signal, we use three signals 1 luminance (brightness-basic signal) and 2 chrominance (color signals). In NTSC, luminance and chrominance are interleaved Goal at receiver separate luminance from chrominance components avoid interference between them prior to recovery of primary color signals for display. Video

Color Encoding RGB signal - for separate signal coding YUV signal consists of 3 separate signals for red, green and blue colors. Other colors are coded as a combination of primary color. (R+G+B = 1) --> neutral white color. YUV signal separate brightness (luminance) component Y and color information (2 chrominance signals U and V) Y = 0.3R + 0.59G + 0.11B U = (B-Y) * 0.493 V = (R-Y) * 0.877 Resolution of the luminance component is more important than U,V Coding ratio of Y, U, V is 4:2:2 Video

Color Encoding(cont.) YIQ signal Composite signal similar to YUV - used by NTSC format Y = 0.3R + 0.59G + 0.11B U = 0.60R - 0.28G + 0.32 B V = 0.21R -0.52g + 0.31B Composite signal All information is composed into one signal To decode, need modulation methods for eliminating interference b/w luminance and chrominance components. Video

Digitalization Refers to sampling the gray/color level in the picture at MXN array of points. Once points are sampled, they are quantized into pixels sampled value is mapped into an integer quantization level is dependent on number of bits used to represent resulting integer, e.g. 8 bits per pixel or 24 bits per pixel. Need to create motion when digitizing video digitize pictures in time obtain sequence of digital images per second to approximate analog motion video. Video

Computer Video Format Video Digitizer A/D converter Important parameters resulting from a digitizer digital image resolution quantization frame rate E.g. Parallax X Video - camera takes the NTSC signal and the video board digitizes it. Resulting video has 640X480 pixels spatial resolution 24 bits per pixel resolution 20fps (lower image resolution - more fps) Output of digital video goes to raster displays with large video RAM memories. Color lookup table used for presentation of color Video

Digital Transmission Bandwidth Bandwidth requirement for images raw image transmission b/w = size of image = spatial resolution x pixel resolution compressed image - depends on compression scheme symbolic image transmission b/w = size of instructions and primitives carrying graphics variables Bandwidth requirement for video uncompressed video = image size X frame rate compressed video - depends on compression scheme e.g HDTV quality video uncompressed - 345.6Mbps, compressed using MPEG (34 Mbps with some loss of quality). Video