Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?

Slides:



Advertisements
Similar presentations
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Advertisements

Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
大阪大学 大学院基礎工学研究科 占部研究室 田中 歌子
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Generation of short pulses
Making cold molecules from cold atoms
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Testing the Penning trap (operated as a Paul trap)
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Laser-induced vibrational motion through impulsive ionization Grad students: Li Fang, Brad Moser Funding : NSF-AMO October 19, 2007 University of New Mexico.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Towards sympathetic cooling of trapped ions with laser- cooled Mg+ ions for mass spectrometry and laser spectroscopy Radu Cazan.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Chad Orzel Union College Physics Radioactive Background Evaluation by Atom Counting C. Orzel Union College Dept. of Physics and Astronomy D. N. McKinsey.
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
ArXiv: Optical pulse-shaping for internal cooling of molecules Optical pulse-shaping for internal cooling of molecules Chien-Yu Lien, Scott Williams,
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Broadband Optical Cooling of AlH + to the Rotational Ground State Christopher M. Seck, Chien-Yu Lien, Brian C. Odom Physics & Astronomy, Northwestern University.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Collinear laser spectroscopy of 42g,mSc
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Precision Molecular Ion Spectroscopy: A New Probe for New Physics Brian Odom.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Measurement Science Science et étalons
Preparing antihydrogen at rest for the free fall in
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Making cold molecules from cold atoms
from W. Demtröder “Molecular Physics”
Single molecule spectroscopy: towards precision measurements on CaH+
SYMPATHETIC SIDEBAND COOLING FOR MOLECULAR SPECTROSCOPY
from W. Demtröder “Molecular Physics”
Norm Moulton LPS 15 October, 1999
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Kenneth Brown, Georgia Institute of Technology

Cold Molecular Ions 15  m Ca + X + ?

Ion Trap Ions are trapped in an oscillating quadrupole field Ion stability is based on charge to mass ratio Radial pseudopotential is weaker for larger masses RF ground DC RF ground DC Stability condition  V rf / (r 0 2  rf 2 )] <1

Ions for Doppler Cooling 397 nm 866 nm S 1/2 D 3/2 P 1/2 Ca + 40 Ca + X 2  v’=0 X 2  v=0 BH + Challenges of Laser-Cooling Molecular Ions J. H. V. Nguyen, C. R. Viteri, E. G. Hohenstein, C. D. Sherrill, K. R. Brown, and B. Odom New J. Phys. 13, (2011) X 2  v’=1 370 nm 935 nm S 1/2 D 3/2 P 1/2 Yb Yb + [3/2] 1/2

Doppler Laser Cooling 5 After n absorption-emission cycles, the average atom momentum is reduced by n ħ k. Absorbed photons must be resonant with the Doppler-shifted transition. Cooling rate and temperature limit are proportional to the linewidth.

Doppler Recooling R.J. Epstein et al., Phys. Rev. A (2007) 397 nm 866 nm S 1/2 D 3/2 P 1/2 Simple experimental setup. Difficult for low heating rates. transition linewidth > trap frequency.

Sideband Cooling g e 729 nm 854 nm n n -1 S 1/2 m = -1/2 n -1 n P 3/2 m = -3/2 D 5/2 m = -5/2

Sideband Measurement 397 nm 866 nm S 1/2 D 3/2 P 1/2 D 5/2 P 3/2 854 nm 729 nm J. Labaziewicz et al. Phys. Rev. Lett. 100, (2008) Temperature measurement conceptually simpler. RSB=k BSB=k Transition linewidth < trap frequency.

Atomic & Molecular Ions (115 mK) A. Ostendorff, et al., Phys. Rev. Lett., 97, (2006) K. Mølhave and M. Drewsen, Phys. Rev. A. 62, (2000) Laser cooled Mg + cools MgH + Laser cooled Ba + cools AlexaFlour + Laser-cooled MS: T. Baba and I. Waki, Jpn. J. Appl. Phys., 35, L (1996)

Molecular Ion Spectroscopy J. C. J. Koelemeij, et al. Phys. Rev. Lett (2007) Fluorescence detected REMPD

Molecular Ion Spectroscopy Action Spectroscopy X. Tong, A. Winney, and S. Willitsch Phys. Rev. Lett (2010) N Ar  Ar + + N 2 This reaction is energetically forbidden when N 2 + is in the ground state.

One Ion Limit Ca + CO Trap atomic and molecular ions2. Laser cool ion crystal 3. Heat ion crystal by exciting the molecular ion. 4. Measure temperature change by laser-induced atomic fluorescence

Quantum Logic Spectroscopy A B g e 0 1 A B g e 0 1 A B g e 0 1 Control Spect. Motion Sideband cool to vibrational ground state of the crystal. Excite the spectroscopy ion at the A-B transition plus one motional quanta. If the motion is excited, the g-e transition minus one motional quanta can be observed. Initialize Probe Detect P. O. Schmidt et al., Science 309, 749 (2005)

Be + -Al + Clock Figures from P. O. Schmidt et al., Science 309, 749 (2005) Clock measurement described in T. Rosenband et al., Science 319, 1808 (2008) Tests of Relativity C. W. Chou et al., Scienc, 329, 1630 (2010) A B g e Control Spectroscopy A-B transition in Al + measured by monitoring the population in g by Be + fluorescence.

QLS and SHS

C.R. Clark, J.E. Goeders, Y. Dodia, C.R. Viteri, and KRB, PRA, 81, (2010) Sympathetic Heating Spectroscopy 397 nm 866 nm S 1/2 D 3/2 P 1/  Isotope Abundance  40 Ca 96.9%  44 Ca 2.09% D. Lucas et al., PRA 69, (2004)  Isotope Shift  44 Ca 1 S P 1 : 774 MHz  44 Ca + S 1/2 -P 1/2 : 842 MHz  44 Ca + D 3/2 -P 1/2 : MHz

Cooling vs Heating Cooling Heating LIF SHS (t heat =250 ms) # of Photons 40 s 397 =7 40 s 866 =1000 t meas =3 ms 44 s 397 =0.03 t meas =750 ms 40 Ca + 44 Ca + cool heat recool

SHS Limits For t heat = 1s, there is measurable trap heating. t heat = 1s t recool = 0.39 s t int = 0.5 s Compare to t meas =1.89 s. Calculated fluorescence lost in the detector noise. <1000 photons into 4 

J. E. Goeders, C. R. Clark, G. Vittorini, K.E. Wright, C. Ricardo Viteri, and KRB Resolved Sideband Mass Spectrometry 397 nm 866 nm S 1/2 D 3/2 P 1/2 D 5/2 P 3/2 854 nm 729 nm

729 nm laser Central frequency drifts less than 10 kHz over 7 hrs ATFilms ULE Spacer 100,000 finesse 500 MHz FSR

Zeeman Spectroscopy 729 nm 397 nm 866 nm

Zeeman Spectroscopy

Normal Modes of Two Ions Axial modes Axial frequency of M 1 M1/M2M1/M2 M. Drewsen et al. PRL (2004).

Two Calcium Ions COM BM S 1/2 -D 5/2 Frequency Offset [MHz] Intensity (Arb. Units)

Other Ions Load CaH + or CaO + by leaking in torr H 2 or O 2 Load other isotopes by resonant enhanced two photon ionization

Center of Mass Mode 40 Ca Ca + 40 Ca CaO + 40 Ca Ca + 40 Ca Ca + 40 Ca Ca + 40 Ca Ca + 40 Ca CaH + Frequency Offset (MHz) Population in D 5/

J. H. V. Nguyen, C. R. Viteri, E. G. Hohenstein, C. D. Sherrill, K. R. Brown, and B. Odom New J. Phys. 13, (2011) Application to laser-cooling BH + Laser Cooling of SrF DeMille and coworkers Phys. Rev. Lett. 103, (2009) Nature 467, 820 (2010)

K=0K=1K=2K=3   2 2 v’=0 v’=1 v’=n v=0 v=1

K=0K=1K=2 v’=0 v’=1 v’=n v=0  2 X  2 B  2 A  2 X dissociative Complications Parity Violation Vibrational Decay Photodissociation Predissociation

BH + Vibrational relaxation transforms spread in vibrational states into a spread in rotational states 379nm 417 nm

Precision Spectroscopy v’=0 v’=1  2 X  2 A v=0 Cooling lasers: v=0 ← v’=0, Δ J=0,-1 C1-C2 (one laser plus EOM) C3-C4 (two lasers) Repump lasers: v=0 ← v’=1 Δ J=0,-1 R1-R2 (one laser plus EOM) R1-R4 (one pulsed laser) v=0 ← v’=0, Δ J=-1 PR1-PR2 (one pulsed laser)

Photons Scattered

Conclusions and Outlook  Single ion techniques can be used to accurately measure lines for both allowed and forbidden transitions  BH + is a promising candidate for direct laser cooling  Vibrational overtones of CaH + are good QLS candidates (wavelengths from M. Kajita)  nm  nm  nm

Cold Molecular Ions Surface Electrode Traps QEC and Resources Q1Q1 Q1Q1 T|+  A A Postdoc position available