Rotational Dynamics Just as the description of rotary motion is analogous to translational motion, the causes of angular motion are analogous to the causes.

Slides:



Advertisements
Similar presentations
Classical Mechanics Review 3, Units 1-16
Advertisements

Newton’s Laws Rotation Electrostatics Potpourri Magnetism
Rotational Equilibrium and Rotational Dynamics
(10-6).
Chapter 11 Angular Momentum
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
Warm-up: Centripetal Acceleration Practice
Physics 106: Mechanics Lecture 04
MSTC Physics Chapter 8 Sections 3 & 4.
Chapter 9 Rotational Dynamics.
Ch 9. Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation.
Physics 203 College Physics I Fall 2012
Physics 111: Lecture 19, Pg 1 Physics 111: Lecture 19 Today’s Agenda l Review l Many body dynamics l Weight and massive pulley l Rolling and sliding examples.
Physics Montwood High School R. Casao
Lecture 37, Page 1 Physics 2211 Spring 2005 © 2005 Dr. Bill Holm Physics 2211: Lecture 37 l Work and Kinetic Energy l Rotational Dynamics Examples çAtwood’s.
Chapter 9 Rotational dynamics
Physics 111: Mechanics Lecture 10 Dale Gary NJIT Physics Department.
Physics 201: Lecture 18, Pg 1 Lecture 18 Goals: Define and analyze torque Introduce the cross product Relate rotational dynamics to torque Discuss work.
Chapter 11: Rolling Motion, Torque and Angular Momentum
Chapter 9 Rotational Dynamics.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Rigid Body Dynamics chapter 10 continues
Rotational Kinematics
Physics 106: Mechanics Lecture 03
Physics 106: Mechanics Lecture 02
Classical Mechanics Review 4: Units 1-19
Rotation and angular momentum
Rotation about a fixed axis
Angular Momentum of a Particle
Parallel-Axis Theorem
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
Chapter 11 Angular Momentum.
Chapter 8: Torque and Angular Momentum
Rotation. So far we have looked at motion in a straight line or curved line- translational motion. We will now consider and describe rotational motion.
Chapters 10, 11 Rotation and angular momentum. Rotation of a rigid body We consider rotational motion of a rigid body about a fixed axis Rigid body rotates.
Q10. Rotational Motion.
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
T071 Q17. A uniform ball, of mass M = kg and radius R = 0
AP Physics C: Mechanics Chapter 11
Chapter 10 Rotation.
Chapter 8 Rotational Motion.
Physics 207: Lecture 14, Pg 1 Physics 207, Lecture 14, Oct. 23 Agenda: Chapter 10, Finish, Chapter 11, Just Start Assignment: For Wednesday reread Chapter.
Example Problem The parallel axis theorem provides a useful way to calculate I about an arbitrary axis. The theorem states that I = Icm + Mh2, where Icm.
Rotation of Rigid Bodies
Physics 111 Practice Problem Statements 10 Torque, Energy, Rolling SJ 8th Ed.: Chap 10.6 – 10.9 Contents 11-47, 11-49*, 11-55*, 11-56, 11-60*, 11-63,
2008 Physics 2111 Fundamentals of Physics Chapter 10 1 Fundamentals of Physics Chapter 10 Rotation 1.Translation & Rotation 2.Rotational Variables Angular.
Chapter 10 Chapter 10 Rotational motion Rotational motion Part 2 Part 2.
Rotational Motion. Angular Quantities Angular Displacement Angular Speed Angular Acceleration.
Rotational Dynamics Chapter 8 Section 3.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 8 Part 1 Rotational Motion.
Moment Of Inertia.
Rotational Motion. 6-1 Angular Position, Velocity, & Acceleration.
Rotational and Translational Motion Dynamics 8
ROTATIONAL MOTION Y. Edi Gunanto.
Chapter 9 Rotational Dynamics.
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
1 Rotation of a Rigid Body Readings: Chapter How can we characterize the acceleration during rotation? - translational acceleration and - angular.
Chapter 11 Rotation.
Chapter 11 Angular Momentum. The Vector Product and Torque The torque vector lies in a direction perpendicular to the plane formed by the position vector.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Angular Displacement, Velocity, and Acceleration Rotational Energy Moment of Inertia Torque Work, Power and Energy in Rotational Motion.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Rotational Dynamics The Action of Forces and Torques on Rigid Objects
Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance.
Classical Mechanics Review 4: Units 1-22
10.8   Torque Torque is a turning or twisting action on a body about a rotation axis due to a force, . Magnitude of the torque is given by the product.
Chapter 11 - Rotational Dynamics
Presentation transcript:

Rotational Dynamics Just as the description of rotary motion is analogous to translational motion, the causes of angular motion are analogous to the causes of translational motion: Newton’s Second Law Translational Motion F = ma This relationship is true, but it disregards the location of the force on the body!

ø is smallest angle between r and F when tail to tail Accounting for not only the force but also its location on the object is torque! A torque is a twist as a force is a push or pull Torque is the vector cross product of the displacement of the force with respect to an arbitrary origin and the force that’s acting.  = r x F units: N• m 11.1 The magnitude of torque can be found: ø is smallest angle between r and F when tail to tail  = rFsinø

As viewed from above– counterclockwise (out of board) is negative  = rFsinø ø r The direction of torque will be found as any vector cross product (right hand rule). M F 11.2 As viewed from above– counterclockwise (out of board) is negative clockwise (into board) is positive

Find the resultant net torque if: F1 = 4.20 N, r1 = 1.30 m, ø1 = 75.0˚ F2 = 4.90 N, r2 = 2.15 m, ø2 = 58.0˚ τ = τ1 – τ2

Vector Cross Product- unit vector notation A = (Axi + Ayj + Azk) B = (Bxi + Byj + Bzk) To find A X B use a determinant: i j k Ax Ay Az Ax Ay Az Ax Ay Az Bx By Bz Bx By Bz Bx By Bz 11.4 A X B = (AyBz – AzBy)i + (AzBx – AxBz)j + (AxBy – AyBx)k

Torque and Moment of Inertia A net force is directly proportional to inertia and acceleration: ΣF = ma An object does not want to change its rotational motion any more than its translational motion! A net torque is directly proportional to rotational inertia and angular acceleration. this resistance to angular acceleration is known as moment of inertia (I ) with units: kg-m2 Net Torque would then be a product of the rotational inertia and angular acceleration of an object: Στ = Iα

The pulley shown in the illustration has a radius of 2 The pulley shown in the illustration has a radius of 2.70 m and a moment of inertia of 39.0 kg∙m2. The hanging mass is 4.20 kg and it exerts a force tangent to the edge of the pulley. What is the angular acceleration of the pulley? A string is wound tight around the spindle of a top, and then pulled to spin the top. While it is pulled, the string exerts a constant torque of 0.150 N∙m on the top. In the first 0.220 s of its motion, the top reaches an angular velocity of 12.0 rad/s. What is the moment of inertia of the top? 11.5

Calculating Moment of Inertia Newton’s Second Law: F = ma and τ = Iα For a particle: τ = rF I = τ α = rF a/r = rma a/r I = mr2 For multiple particles: I = miri 2 11.7 Moment of Inertia of a particle is directly related to the mass of the particle and its square of the distance from the arbitrary origin.

Moment of Inertia of a System of Particles Three particles (m1 = 2.3 kg, m2 = 3.2 kg, m3 = 1.5 kg) are connected by thin rods of negligible mass and positioned as shown. Find the rotational inertia through axes perpendicular to the page and through each of the masses. Also find the moment of inertia through the center of mass of the system. m2 5 m 3 m m1 m3 4 m

A)axis of rotation through m1 I1 = ∑miri2 = (2.3)(02 ) + (3.2)(3.02 ) + (1.5)(4.02 ) = 53 kg•m2 B) axis of rotation through m2 I2 = ∑miri2 = (2.3)(3.02) + (3.2)(02) + (1.5)(5.02) = 58 kg•m2 C) axis of rotation through m3 I3 = ∑miri2 = (2.3)(4.02) + (3.2)(5.02) + (1.5)(02) = 117 kg•m2

D) axis of rotation through the cm: Finding the center of mass (with origin at m1): xcm = ∑mixi ∑mi = (2.3)(0) + (3.2)(0) + (1.5)(4) 2.3 + 3.2 + 1.5 = .86 m = (2.3)(0) + (3.2)(3) + (1.5)(0) 2.3 + 3.2 + 1.5 ycm = ∑miyi ∑mi = 1.37 m

r12 = xcm2 + ycm2 = (.86)2 + (1.37)2 = 2.62 m2 r22 = xcm2 + (y2- ycm)2 = (.86)2 + (3 - 1.37)2 = 3.4 m2 r32 = (x3 - xcm ) 2 + ycm2 = (4 - .86)2 + (1.37)2 = = 11.7 m2 Icm = ∑miri2 = (2.3)(2.62) + (3.2)(3.4) + (1.5)(11.7) = 34.5 kg•m2 The I will always be least if the axis of rotation is through the center of mass!

Parallel Axis Theorem: M = ∑mi I = Icm + Mh2 h = distance from axis of rotation to cm For example, from part A: I1 = ? h2 = 2.62 m2 Icm = 34.5 kg•m2 11.14 M = (2.3 + 3.2 + 1.5)kg = 7.0 kg I1 = (34.5) + (7.0)(2.62) = 52.8 kg•m2

The masses and coordinates of four particles are as follows: 50 kg (2 m, 2 m), 25 kg (0 m, 4 m), 25 kg (-3 m, -3 m), and 30 kg (-2 m, 4 m). Calculate the rotational inertia of this collection with respect to the A) x axis B) y axis C) z axis.

Rotational Inertia of Solid Bodies Any object can be considered to be consisting of an infinite number of parts. If we were to use the parallel axis theorem we could divide a solid body into parts and find the rotational inertia in that manner- tedious but valid. If we were to do so, we would find that the rotational inertia of certain objects of regular geometry would simplify to set equations depending upon the mass, radius/length, and axis of rotation! Table 11.8

A pulley with a mass of 2.5 kg and a radius of 20 cm is mounted on a fixed, frictionless axel. A block of 1.2 kg hangs from a light cord wrapped around the pulley (which can be considered a disk). When the block is released, find the acceleration of the block, the tension in the cord as well as the acceleration of the pulley. mp = 2.5 kg I = .5mpR2 R = .20 m mb = 1.2 kg

Equilibrium would mean ∑F = 0 and ∑ = 0 ! T a = ? ∑Fy = ma = mg - T ∑ = TR = I = (1/2)MR2(a /R) T = (1/2)Ma mg ma = mg - (1/2)Ma = 4.8 m/s2 a = 2mg M + 2m T = (1/2)Ma = 6.0 N  = a / R = 24 rad/s2

In an Atwood’s machine, one block has a mass of 512 g while the other has a mass of 463 g. The pulley is mounted in horizontal, frictionless bearings and has a radius of 4.90 cm. When the masses are released from rest, the heavier block is observed to fall 76.5 cm in 5.11 s. What must be the moment of inertia of the pulley?

Rotational Dynamics for a Rigid Body If we consider a rigid body to be the sum of particles: v2 v1  v = r K1 = .5m1r122 m2 m1 r1 K2 = .5m2r222 Ktotal = ∑Ki r2 K = .5m1r1212 + .5m2r22 22 ………… K = .5miri2 2

Therefore the kinetic energy of a rigid body that is rotating: Translational Angular F = ma Τ = Iα W = FΔs W = τΔθ K = .5mv K = .5 I 2

Combined Translational and Rotational Motion The total Kinetic Energy of a moving object consists of two terms-- one associated with the translational motion and one associated with the rotational motion.  The two terms are independent of one another  vcm and  can be independent of each other K = (1/2)mvcm2 + (1/2)I cm2

A yo-yo with a mass of. 023 kg consisting of two disks of radius 2 A yo-yo with a mass of .023 kg consisting of two disks of radius 2.6 cm connected by a shaft of radius .30 cm is spinning at the end of the string of length .84 m. What angular velocity is needed for the yo-yo to climb up the string? Assume the string to be of negligible thickness. 

Min. energy at top is when v =  = 0 R = 2.6 cm Ro = 0.3 cm M = .023 kg L = .84 m At the bottom, the E is all Rotational Kinetic, while at the top it is KR, KT and Ug, so by conservation of energy: KR0 = KR + KT + U  = 4gL R2 .5Io2 = .5I 2 + .5Mv2 + MgL Min. energy at top is when v =  = 0 = 221 rad/s I = (1/2)MR2

A solid cylinder of radius 10. 4 cm and mass 11 A solid cylinder of radius 10.4 cm and mass 11.8 kg starts from rest and rolls without slipping a distance of 6.12 m down a house roof that is inclined 27.0˚. A) What is the angular speed of the cylinder about its center as it leaves the roof? B) The outside wall of the house is 5.16 m high. How far from the wall will the cylinder hit the level ground? Ch. 12, problem 57