Presentation is loading. Please wait.

Presentation is loading. Please wait.

Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance.

Similar presentations


Presentation on theme: "Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance."— Presentation transcript:

1 Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance through which the force acts a.k.a. lever arm l F l F l F l F  = Fl = F r sin  = F tan r

2 Phys211C10 p2 Example: To loosen a difficult nut, a wrench with a piece of pipe for additional leverage is used. If the distance from the center of the nut to the end of the pipe is 0.80 m, and the wrench and pipe make an angle of 20º with respect to the horizontal, determine the magnitude and direction of the torque applied by a 900 N man standing on the edge of the pipe.

3 Phys211C10 p3 r r1r1 F 1,rad F 1,tan F 1,y y-axis axis of rotation Torque and Angular Acceleration single particle contribution

4 Phys211C10 p4 Problem solving tactics: Draw a diagram For each body, draw a free body diagram Choose coordinates and directions (including for rotations) Relate torques to angular accelerations and forces to linear accelerations for more than one body, repeat and note any geometrical relation between motions of bodies

5 Phys211C10 p5 A cord is wrapped around a solid 50 kg cylinder which has a diameter of 0.120 m, and which rotates (frictionlessly) about an axis through its center. A 9.00 N force is applied to the end of the cable, causing the cable to unwind and the drum (initially at rest) to rotate. What is the angular acceleration of the drum? 9.00 N A mass m is suspended by a string wrapped around a pulley of radius R and moment of inertia I. The mass and pulley are initially at rest. Determine the acceleration of the disk and of the suspended mass in terms of the given parameters (m, I, R). Examine the special case where the pulley is a uniform disk of mass M.

6 Phys211C10 p6 A mass m 2 is suspended by a string wrapped around a pulley of radius R and moment of inertia I. The string is then connected to a mass m 1 which slides on a horizontal frictionless surface. The masses and pulley are initially at rest. Determine the accelerations of the masses and the pulley in terms of the the given parameters (m 1, m 2, I, R). Examine the special case where the pulley can be treated as a thin cylindrical shell of mass M. m1m1 m2m2 M

7 Phys211C10 p7 More on Combining Translation and Rotation riri vi’vi’ F 1,y y-axis cm axis axis of rotation v cm vivi

8 Phys211C10 p8 example: A primitive yo-yo is made of a solid cylinder of mass M with string wrapped around its radius R. What is the speed of the cylinder after it has dropped a distance h? What is acceleration of the cylinder and the tension in the string? example: A solid bowling bowl rolls without slipping down a ramp inclined at an angle  with respect to the horizontal. What is the ball’s acceleration?

9 Phys211C10 p9 Rolling Friction: deforming surfaces Stiff surface; normal force through cm, no torque Distorted surface; normal force offset from cm, net torque slows rotation

10 Phys211C10 p10  Work and Power in Rotational Motion Force applied to a point on a rotating object s R F tan

11 Phys211C10 p11

12 Phys211C10 p12 If the power output of an engine is 200 hp at 6000rpm, what is the corresponding torque? A motor produces a torque of 10 N-m with disk mounted to its shaft. The disk has a moment of inertia of 2.0 kg m 2. If the system starts from rest, determine the work done by the motor in 8.0 s, and the kinetic energy of the disk at the end of this time. What is the average power delivered during this 8 seconds?

13 Phys211C10 p13 Angular momentum for a single particle, defined as L  r × p = r × mv depends upon origin! L  mvr sin  = mvr  = mv  r r mvmv mvmv  rr L  Right hand rule for direction Generalize to composite object In the absence of external torques, angular momentum is conserved

14 Phys211C10 p14 Two disks with moments of inertia I a and I b share a common axis of rotation, but have different angular velocities (  a and  b ). The disks are brought together so that they eventually reach a common final angular velocity. Derive an expression for that final angular velocity . Suppose the two disks are uniform with masses of 2.0 kg and 4.0 kg, radii of.20 m and.10 m and initial angular speeds of 50 rad/s and 200 rad/s. Determine the final angular speed and the change in the kinetic energy of the system.

15 Phys211C10 p15 A bullet (10 g and initial speed 400 m/s) is fired into a door from a direction perpendicular to the door. The door has a mass of 15 kg and is 1.0 m wide. Determine the angular velocity of the door after the bullet imbeds itself in the center of the door.

16 Phys211C10 p16 Gyroscopes and Precession L  w 


Download ppt "Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance."

Similar presentations


Ads by Google