Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 9.0 earthquake off its northeastern.

Slides:



Advertisements
Similar presentations
Japan was struck by a magnitude 9
Advertisements

A major magnitude 7.0 earthquake ( ) was felt strongly on nearby Adak Island about 94 km west-northwest of the epicenter. No tsunami warnings were issued.
Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Thursday, April 7, 2011 at 14:32:41 UTC Japan was rattled by a strong aftershock and tsunami warning.
A magnitude 7.1 struck early Saturday off Japan's east coast. The quake hit at 2:10 a.m. Tokyo time about 170 miles from Fukushima, and it was felt in.
A 8.0 magnitude earthquake occurred offshore in the Solomon Islands. The earthquake occurred at a depth of 28.7 km (17.8 miles) and a tsunami warning was.
Continuation of plate tectonics- convection in the asthenosphere is still the driving force of moving lithospheric plates.
Earthquakes in New Zealand. Global Distribution of Earthquakes.
Japan Earthquake and TsunamiEarthquake. What happened? Large earthquake Earthquake hazards: – Tsunami – Ground shaking – Liquefaction – Landslides People.
Magnitude 8.9 (9.0) earthquake near Sendai, east coast of Honshu, Japan Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 8.9 (9.0)
Earth Science Fall  Earthquake- vibration of the earth’s crust Usually occur when rocks under stress suddenly shift along a fault.
Test 2 mean: 75, median: 79 multiple choice: 42 questions, 2 points each short answer: 4 questions, 4 points each 100 total: circled number inside front.
A magnitude 7.3 earthquake occurred to the east of Kathmandu, in an area close to Mount Everest. This large earthquake is the largest aftershock so far.
2011 Tōhoku Earthquake and Tsunami. MODIS satellite image on 26 FEB, before the tsunami. Scale bar is 10 km.
Earthquakes Chapter 16. What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy radiates in all.
Locating the source of earthquakes Focus - the place within Earth where earthquake waves originate Epicenter on an earthquake– location on the surface.
Magnitude 8.8 OFFSHORE MAULE, CHILE Saturday, February 27, 2010 at 06:34:17 UTC A great 8.8-magnitude struck central Chile early Saturday. The quake hit.
Houses are shown in flames while the Natori river floods over the surrounding area with tsunami tidal waves in Natori city, Miyagi Prefecture, Northern.
Tsunami In Japan 2011 By Paulina and Alexandra. What is a tsunami ? A tsunami is a series of waves, made in an ocean or other body of water by an earthquake,
Magnitude 8.9 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 8.9 earthquake off its northeastern.
Magnitude 6.3 Earthquake South Island of New Zealand Monday, February 21, 2011 at 23:51:43 UTC A magnitude 6.3 earthquake shook the southern New Zealand.
Lecture 16 Earthquakes What are earthquakes? Elastic rebound theory Waves generated by earthquakes: P waves, S waves, Surface waves Locating earthquakes.
Weston Observatory in the 21 st Century... Seismology Research Science Education Public Outreach Earthquakes Monitoring Planet Earth Earth’s Interior Earth.
1.What is an earthquake? 2.What causes earthquakes? 3.How are earthquakes measured? 4.What areas are more susceptible to an earthquake? Why? 5.What does.
Earthquakes (Chapter 8)
Japan Earthquake Friday March The full scale: before and after in Sendai.
IRIS Data Tools and Animations John Taber, Tammy Bravo, Michael Hubenthal, Jenda Johnson.
Earthquakes Chapter 11 P. Lobosco
Comparison of February 2010 Chile, January 2010 Haiti, and December 2004 Sumatra Earthquakes. EarthquakeMagnitude*Focal DepthTsunamiDeaths Chile8.835 km“minor”~900.
Earthquakes (Chapter 13). Lecture Outline What is an earthquake? Seismic waves Epicenter location Earthquake magnitude Tectonic setting Hazards.
Earthquake – A sudden release of stored energy. This energy has built up over long periods of time as a result of tectonic forces within the earth.
Chapter 4 Earthquakes Map is from the United States Geological Survey and shows earthquake hazard for the fifty United States.
The 03/11/2011 Mw9.0 Tohoku, Japan Earthquake Educational Slides Created & Compiled by Gavin Hayes & David Wald U.S. Geological Survey, National Earthquake.
Pelatihan : Techniques in Active Tectonic Study Juni 20-Juli 2, 2013 Instruktur: Prof. J Ramon Arrowsmith (JRA) Dari Arizona State University (ASU) - US.
A magnitude 5.7 earthquake occurred in the Aegean sea, between Greece and Turkey, at 14:16 on the 8th January The earthquake occurred 32 km below.
Earthquakes Sudden movement of surface when accumulated strain along opposing sides of a fault is suddenly released. Rock stretches and snaps.
Earthquakes and Landscapes
CO- Earthquakes LO-Describe the major hazards and causes of Earthquakes around the world.
Earthquake Hazards. Predictions Based on 2 factors: – Earthquake history in the area (only narrows down to a decade or a few years) – Rate at which strain/stress.
Earthquakes and Earth’s Interior Key Points are Green.
A 7.2 magnitude earthquake occurred about 250 km ENE of Kurli’sk, Russia. The earthquake occurred at a depth of km (76 miles). There are currently.
A magnitude 7.6 earthquake struck near the Solomon Islands on Sunday morning local time; there were no immediate reports of damage. The earthquake was.
Earthquakes.
Cornell Notes. Earthquakes Poseidon Earthquakes Worldwide.
Friday 2/25/11 Discovery’s Last Ride Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND Monday, February 21, 2011 at 23:51:43 UTC A magnitude 6.3 earthquake.
EARTHQUAKE AND TSUNAMI. BASIC CONCEPTS: THERMAL EVOLUTION OF OCEANIC LITHOSPHERE Warm mantle material upwells at spreading centers and then cools Because.
Understanding Earth Sixth Edition Chapter 13: EARTHQUAKES © 2011 by W. H. Freeman and Company Grotzinger Jordan.
Questions and Answers Project Questions: Dangerous and Natural Energy Food Chains and Food Webs A look ahead to Unit 5.
EARTH SCIENCE Geology, the Environment and the Universe
Question of the Day What is a natural disaster?
Earthquakes.
Earthquakes Liz LaRosa 2009http:// for my 5 th grade science class 2009.
Introduction to seismology Mathilde B. Sørensen and Jens Havskov.
Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 9.0 earthquake off its northeastern.
Earthquakes Poseidon 1964 Anchorage earthquake and Mt. St. Helens erupting in 1980.
What are Magnitude and Intensity?
Earthquakes and tsunamis in the last week
Images courtesy of Google Earth (top), and USGS (bottom).
Images courtesy of Google Earth
Japan’s Earthquake &Tsunami 2011
Understanding Earth Chapter 13: EARTHQUAKES Grotzinger • Jordan
Earthquakes.
Earthquakes! Earthquakes!.
Magnitude 7.9 SE of KODIAK, ALASKA Tuesday, January 23, 2018 at 09:31:42 UTC A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast.
Magnitude 8.0 SAMOA ISLANDS REGION Tuesday, September 29, 2009 at 17:48:11 UTC A magnitude 8.0 earthquake in the Samoa Islands region, has killed 39.
Earthquakes.
Earthquakes Chapter 6.
Nature, magnitude and frequency of seismic activity (earthquakes)
Presentation transcript:

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 9.0 earthquake off its northeastern coast Friday. This is one of the largest earthquakes that Japan has ever experienced. USGS Part of houses swallowed by tsunami burn in Sendai, Miyagi Prefecture (state) after Japan was struck by a strong earthquake off its northeastern coast Friday, March 11, New York Times In downtown Tokyo, large buildings shook violently and there is severe flooding due to a tsunami generated by the earthquake. This slide set is slightly modified from slides available at

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground. The tsunami waves traveled far inland, the wave of debris racing across the farmland, carrying boats and houses with it. Houses were washed away by tsunami in Sendai, Miyagi Prefecture in eastern Japan, after Japan was struck by a magnitude 9.0 earthquake off the northeastern coast. New York Times Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC The tsunami, seen crashing into homes in Natori, Miyagi prefecture. AP

CNN reported “The quake rattled buildings and toppled cars off bridges and into waters underneath. Waves of debris flowed like lava across farmland, pushing boats, houses and trailers toward highways.” Additionally, a number of fires broke out including one at an oil refinery which at this time, is burning out of control. Giant fireballs rise from a burning oil refinery in Ichihara, Chiba Prefecture (state) after Japan was struck by a strong earthquake off its northeastern coast Friday, March 11, Los Angeles Times Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

This earthquake occurred 130 km (80 miles) east of Sendai, Honshu, Japan and 373 km (231 miles) northeast of Tokyo, Japan. Images courtesy of the US Geological Survey Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Modified Mercalli Intensity Perceived Shaking Extreme Violent Severe Very Strong Strong Moderate Light Weak Not Felt USGS Estimated shaking Intensity from M 9.0 Earthquake Shaking intensity scales were developed to standardize the measurements and ease comparison of different earthquakes. The Modified-Mercalli Intensity scale is a twelve-stage scale, numbered from I to XII. The lower numbers represent imperceptible shaking levels, XII represents total destruction. A value of IV indicates a level of shaking that is felt by most people. Image courtesy of the US Geological Survey Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Shaking Intensity – Mercalli Scale

USGS PAGER Population Exposed to Earthquake Shaking Image courtesy of the US Geological Survey The USGS PAGER map shows the population exposed to different Modified Mercalli Intensity (MMI) levels. MMI describes the severity of an earthquake in terms of its effect on humans and structures and is a rough measure of the amount of shaking at a given location. Overall, the population in this region resides in structures that are resistant to earthquake shaking. The color coded contour lines outline regions of MMI intensity. The total population exposure to a given MMI value is obtained by summing the population between the contour lines. The estimated population exposure to each MMI Intensity is shown in the table below. Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Globally, this is the 4th largest earthquake since Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Chile 1960 Alaska 1964 Sumatra 2004 Chile 2010 Japan 2011 Russia 1952 Ecuador 1906 Alaska 1965

Peak ground acceleration is a measure of violence of earthquake ground shaking and an important input parameter for earthquake engineering. The force we are most experienced with is the force of gravity, which causes us to have weight. The peak ground acceleration contours on the map are labeled in percent (%) of g, the acceleration due to gravity. Map showing measured Peak Ground Accelerations across Japan measured in percent g (gravity). Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Image courtesy of the US Geological Survey Ground Acceleration

Image courtesy of the US Geological Survey This earthquake (gold star), plotted with regional seismicity since 1990, occurred at approximately the same location as the March 9, 2011 M 7.2 earthquake. In a cluster, the earthquake with the largest magnitude is called the main shock; anything before it is a foreshock and anything after it is an aftershock. A main shock will be redefined as a foreshock if a subsequent event has a larger magnitude. This earthquake redefines the M 7.2 earthquake as a foreshock, with this event replacing it as the main shock. Earthquake and Historical Seismicity Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan. This map also shows the rate and direction of motion of the Pacific Plate with respect to the Eurasian Plate near the Japan Trench. The rate of convergence at this plate boundary is about 83 mm/yr (8 cm/year). This is a fairly high convergence rate and this subduction zone is very seismically active. Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Japan Trench Tectonic Framework of Japan

The map on the right shows historic earthquake activity near the epicenter (star) from 1990 to present. As shown on the cross section below, earthquakes are shallow (orange dots) at the Japan Trench and increase to 300 km depth (blue dots) towards the west as the Pacific Plate dives deeper beneath Japan. Images courtesy of the US Geological Survey Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Seismicity Cross Section across the subduction zone showing the relationship between color and earthquake depth. Seismicity Map and Cross Section

At the latitude of this earthquake, the Pacific plate moves approximately westwards with respect to the Eurasian plate at a velocity of 83 mm/yr. The Pacific plate thrusts underneath Japan at the Japan Trench, and dips to the west beneath Eurasia. The location, depth, and focal mechanism of the March 11 earthquake are consistent with the event having occurred as thrust faulting associated with subduction along this plate boundary. Shaded areas show quadrants of the focal sphere in which the P-wave first-motions are away from the source, and unshaded areas show quadrants in which the P-wave first- motions are toward the source. The dots represent the axis of maximum compressional strain (in black, called the "P-axis") and the axis of maximum extensional strain (in white, called the "T-axis") resulting from the earthquake. USGS Centroid Moment Tensor Solution Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Tectonic Framework

Large earthquakes involve slip on a fault surface that is progressive in both space and time. This “map” of the slip on the fault surface of the M 9.0 Japan earthquake shows how fault displacement propagated outward from an initial point (or focus) about 24 km beneath the Earth’s surface. The rupture extended over 500 km along the length of the fault, and from the Earth’s surface to depths of over 50 km. Image courtesy of the U.S. Geological Survey Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Cross-section of slip distribution. The strike direction of the fault plane is indicated by the black arrow and the hypocenter location is denoted by the red star. The slip amplitude are showed in color and motion direction of the hanging wall relative to the footwall is indicated by black arrows. Contours show the rupture initiation time in seconds. Large Earthquakes are not Instantaneous

Although magnitude is still an important measure of the size of an earthquake, particularly for public consumption, seismic moment is a more physically meaningful measure of earthquake size. Seismic moment is proportional to the product of the slip on the fault and the area of the fault that slips. Image courtesy of the U.S. Geological Survey Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC This graph of the moment rate function describes the rate of moment release with time after earthquake origin. The largest amounts of rupture occurred over 100 seconds but smaller displacements continued for another 75 seconds after the start of the earthquake. Earthquake Magnitude vs. Seismic Moment

The moment magnitude scale is designed to give an accurate characterization of the true size of an earthquake, but be tied to the original description of magnitude that was developed by Charles Richter. Moment magnitude accounts for earthquake size by looking at all the energy released. It is striking that only 6 earthquakes over the last 106 years account for over half of the energy released during that time. Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC New Mexico Institute of Mining and Technology

Tsunami monitoring systems have been strategically deployed near regions with a history of tsunami generation, to ensure measurement of the waves as they propagate towards coastal communities and to acquire data critical to real-time forecasts. Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC Locations of NOAA’s National Data Buoy Center (NDBC) DART stations comprising the operational network.

Shallow great earthquakes in subduction zones often cause tsunamis when they offset the ocean floor. This offset generates tsunami waves. This earthquake did produce a tsunami, which was measured on a nearby buoy and triggered the warning system. Flash animation of how the DART system detects ocean waves Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC The water column height change that triggered the system.

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC The DART II® system consists of a seafloor bottom pressure recording (BPR) system capable of detecting tsunamis as small as 1 cm, and a moored surface buoy for real-time communications. DART II has two-way communications between the BPR and the Tsunami Warning Center (TWC) using the Iridium commercial satellite communications system. The two-way communications allow the TWCs to set stations in event mode in anticipation of possible tsunamis or retrieve the high-resolution (15-s intervals) data in one-hour blocks for detailed analysis. DART II systems transmit standard mode data, containing twenty-four estimated sea-level height observations at 15-minute intervals, once very six hours. NOAA

This tsunami propagation forecast model shows the forecast maximum tsunami wave height (in cm). Ocean floor bathymetry affects the wave height because a tsunami moves the seawater all the way to the floor of the ocean. This led to a Pacific wide tsunami warning being issued. Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Projected travel times for the arrival of the tsunami waves across the Pacific. Nearby the earthquake there are only minutes to evacuate. However, in many other regions there is advance warning. A tsunami map shows projected travel times for the Pacific Ocean. This map indicates forecasted times only, not that a wave traveling those distances has actually been observed.. NOAA Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC