J.B. Natowitz. Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003)

Slides:



Advertisements
Similar presentations
Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Advertisements

Marina Barbui Trento, Italy, April 7-11, 2014
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Construct an EOS for use in astrophysics: neutron stars and supernovae wide parameter range: proton fraction Large charge asymmetry: thus investigation.
Isospin Dependence of Intermediate Mass Fragments in 124Sn, 124Xe + 124Sn, 112Sn D. V. Shetty, A. Keksis, E. Martin, A. Ruangma, G.A. Souliotis, M. Veselsky,
Nuclear equation of state in form suitable for quantum molecular dynamics model 1.Brief indroduction of the EOS prescription 2.New form for bullk and surface.
E. De Filippo (INFN Catania) for the REVERSE / ISOSPIN collaboration Time sequence and isoscaling in neck fragmentation  Fragments production in peripheral.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Transport phenomena in heavy-ion reactions Lijun Shi NSCL MSU and Physics Department, McGill University Catania, Italy, Jan. 23, 2004.
Fragment Isospin as a Probe of Heavy-Ion Collisions Symmetry term of EOS Equilibration “Fractionation” – inhomogeneous distribution of isospin Source composition.
The National Superconducting Cyclotron State University Betty Tsang Constraining neutron star matter with laboratory experiments 2005.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
16/1/06Eurisol ECT*1 The nuclear liquid gas phase transition Francesca Gulminelli LPC Caen and Institut Universitaire de France The status of.
J. B. Natowitz CCAST Workshop, Beijing August 2005.
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
E432a: Decay of Highly Excited Projectile-like Fragments Formed in dissipative peripheral collisions at intermediate energies 1.Understanding thermodynamic.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Isospin dependence of the nuclear phase transition near the critical point Zhiqiang Chen Institute of Modern Physics (Lanzhou) Chinese Academy of Sciences.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Y. G. Ma, CCAST Workshop, Aug 19-21, Beijing 1 Coherent signals of the critical behavior in light nuclear systems Yu-Gang Ma SINAP Shanghai Institute of.
Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions Yingxun Zhang ( 张英逊 ) 2012 年 8 月 10 日, 兰州 合作者: Zhuxia Li, (CIAE)
NN2012, May 31 th 2012, San Antonio, TX M. Barbui.
J. Su( 苏军 ) and F.S. Zhang( 张丰收 ) College of Nuclear Science and Technology Beijing Normal University, Beijing, China Tel: ,
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
Dynamical fragment production in non-central heavy-ion collisions E *, J PLF* TLF* Sylvie Hudan, Indiana University EvaporationBinary breakupfragmentation.
Motivation Current status Outlook This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy:
Dynamics effect and evolution of isoscaling on the Quantum Molecular Dynamics model Wendong TIAN, Yugang MA, Xiangzhou CAI, Jingen CHEN, Jinhui CHEN, Deqing.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Evidence of Critical Behavior in the Disassembly of Light Nuclei with A ~ 36 Yu-Gang Ma Texas A&M University, Cyclotron Institute, USA Shanghai Institute.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
J. B. Natowitz Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station Experimental Investigations of The Equation of State.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Hua Zheng a, Gianluca Giuliani a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy. 1 Coulomb Correction to the.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel WPCF 2013 Acireale, Italy 7-Nov-2013 Clustering and Low Density.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
Hua Zheng a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy Density and Temperature of Fermions.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China – in JBN group.
Chun-Wang Ma( 马春旺 ) Henan Normal University 河南师范大学 (
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Equation-of-State (EOS) of Nuclear Matter with Light Cluster Correlations Equation-of-State (EOS) of Nuclear Matter with Light Cluster Correlations XLVIII.
Joseph B. Natowitz, Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA Exploring Clustering in Near.
Constraints on E sym (  )-L from RIB induced reactions…and more Zach Kohley NSCL/MSU NuSYM14 July 7, 2014.
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Shalom Shlomo Cyclotron Institute Texas A&M University
Transverse and elliptic flows and stopping
Energy Dependence of the Isotopic Composition in Nuclear Fragmentation
Jiansong Wang for NIMROD Collaboration
Cyclotron Institute, Texas A&M University
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
K. Hagel IWNDT 2013 College Station, Texas 20-Aug-2013
K. Hagel Nucleus-Nucleus 2015 Catania, Italy 23-Jun-2015
Tests of the Supernova Equation of State using Heavy Ion Collisions
Presentation transcript:

J.B. Natowitz

Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003) Eur.Phys.J. A22 (2004)

The Symmetry Energy Problem Constraining the density dependence of the symmetry energy is a complex problem- The Nuclei Always Solve the Problem Exactly For Us There is always a model dependence Requires close synergy between theorists and experimentalists

While low density situation would appear to be easier to constrain- cluster formation changes the medium (leads to additional complexity opportunity)

Relativistic Equation of State of Nuclear Matter for Supernova and Neutron Star H.Shen, H.Toki, K. Oyamatsu and K. Sumiyoshi Nucl.Phys. A637 (1998) Cluster Formation and The Virial Equation of State of Low-Density Nuclear Matter C.J. Horowitz and A. Schwenk Nucl. Phys. A776 (2006) Cluster Formation and The Equation of State of Low-Density Nuclear Matter

Data- Kowalski et al., Phys. Rev. C, (2007) Calculation -Private Communication – O’Connor, Schwenk, Horowitz 2008

C. J. Horowitz and A. Schwenk nucl-th/ Calculation -Private Communication – O’Connor, Schwenk, Horowitz 2008 What is the composition, EOS and neutrino response of nuclear matter near the neutrinosphere?

Light Charged Particle Emission Studies p + 112Sn and 124Sn d + 112Sn and 124Sn 3He + 112Sn and 124Sn 4He + 112Sn and 124Sn 10B + 112Sn and 124Sn 20Ne + 112Sn and 124Sn 40Ar + 112Sn and 124Sn 64Zn+ 112Sn and 124Sn Projectile Energy - 47A MeV NIMROD 4 Pi Charged Particles 4 Pi Neutrons Thesis – L. Qin TAMU Reaction System List

Velocity Plots Light Charged Particles TLF NN Experiment From Fitting Velocity Plot Protons 40 Ar+ 124 Sn PLF V parallel V perpendicular NN Sum of Source Fits Sampling the GAS-early emission faster particles Sampling the Liquid – late emission Evaporation-like

F sym ═ α T / {(4)[(Z/A) 2 1 – (Z/A) 2 2 ]} lAB LIQUID GAS Reaction Tomography

ISOSCALING ANALYSIS TRANSPORT CALCULATIONS For Us - Antisymmetrized Molecular Dynamics - ONO Constrained Molecular Dynamics - Bonasera NUCLEAR MATTER CALCULATIONS Beth-Uhlenbeck Cluster Mean Field Approach- Roepke Tsang et al. There is always a model dependence

“The Quantum Nature of a Nuclear Phase Transition. A. Bonasera,Z. Chen, R. Wada, K. Hagel, J. B. Natowitz, P. Sahu, L. Qin, S. Kowalski, Th. Keutgen, T. Materna,T. Nakagawa, “ Physical Review Letters, (2008)

L.Qin et al. In Progress Data - Surface, T Corrected LIQUID

K. Hagel et al. Phys. ReV. C (2000) J.B. Natowitz et al., Phys.Rev. C (2002) Average Density Determination Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas Model 47A MeV LIQUID REGION

Clusterization in Very Low Density Nuclear Matter PRC 75, (2007)

ρ n = x T 3/2 exp[- 20.6/T] Y( 4 He)/ Y( 3 He) fm -3 ρ p = x T 3/2 exp[ -19.8/T] Y( 4 He)/ Y( 3 H) fm -3 ρ nucl tot = ρ p + ρ n + 2 ρ d + 3 ρ t + 3 ρ 3He + 4 ρ α Density LOW DENSITY CHEMICAL EQUILIBRIUM MODEL(Albergo) Temperature T HHe = 14.3/ [ln (1.59R)] [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] LCP Isoscaling Analyses and Symmetry Energy R =

Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/ Light Clusters in Nuclear Matter of Finite Temperature

K, fm -1 Binding Energy, MeV Medium Modifications - Gerd Roepke et al. Work in Progress Free B.E.

Alpha Mass Fraction Density nuc/fm 3 Virial (no A=3) T = 5 A=3 Included No Medium Effects Medium Effects No Additional Momentum of cluster relative to the medium

Temperature Corrections Surface Corrections

GAS LIQUID L.Qin et al. In Preparation

Virial Orig T=5 Density nuc/fm 3 Alpha Mass Fraction

K, fm -1 Binding Energy, MeV Why Mott Point Not Seen? Effect of Momentum Relative to the Medium ? Free B.E.

Isoscaling Evolution  IMFs were measured by a Si quadrant telescope, backed by four CsI detectors (3cm) at 20°. The Si telescope consisted of four 5cm x 5cm area detectors, having thicknesses 129µm+300µm+1000µm+1000µm ( run) 61µm+300µm+1000µm+1000µm ( run & run) Fig. 1 CsI detectorsFig. 3 Demon detectors (right)Fig. 2 Demon detectors (left) Z. Chen, R. Wada, M. Huang et al ---in Progress See Talk of Z. Chen

(1) AMeV 64 Zn beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au targets (2) AMeV 64 Zn beam on 112 Sn target 40 AMeV 70 Zn beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au, 232 Th targets (3) AMeV 64 Ni beam on 58 Ni, 64 Ni, 112 Sn, 124 Sn, 197 Au, 232 Th targets Reaction systems studied

Isotope resolution Z=4 Z=6 Z=8 Z=10 Fig. 4 Isotopes for Z=3 to 12 have been clearly identified in all Si-Si combinations Fig. 5 Linearized Z distribution

Isoscaling Evolution from AMD. Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) Time=2000 fm/cTime=300 fm/c

Fragment –Particle Correlations to Explore Effects of Secondary Decay S. Hudan et al.

40 MeV/u 64 Zn Sn Z. Chen, R. Wada, M. Rodrigues et al. Work in Progress

M. Barbui, A. Bonasera. C. Bottosso, M. Cinausero, Z. Chen, Y. El Masri, D. Fabris, K. Hagel, S. Kimura, T. Keutgen, S. Kowalski, M. Lunardon, Z. Majka, S. Moretto, G. Nebbia, J. Natowitz, A. Ono, L. Qin, S. Pesente, G. Prete, V. Rizzi, M. Rodrigues, G. Roepke, P. Sahu, S. Shlomo, R. Wada, J. Wang, G. ViestiM. CinauseroZ. ChenY. El MasriD. FabrisK. HagelT. KeutgenS. KowalskiM. LunardonS. MorettoG. NebbiaJ. Natowitz L. QinS. PesenteG. Prete V. RizziG. Viesti Texas A&M, Padova, Legnaro, Krakow, Katowice,Louvain la Neuve, Lanzhou Texas A&M University, College Station, Texas INFN Laboratori Nazionali di Legnaro, Legnaro, Italy INFN Dipartimento di Fisica, Padova, Italy Jagellonian University, Krakow, Poland UCL, Louvain-la-Neuve, Belgium

Figure 2. The alpha-particle cluster structure of the Hoyle-state in 12C, as predicted using Fermionic Molecular Dynamics (M. Chernykh, et al., Phys. Rev. Lett. 98, (2007)).

We Hope To Be Able To Welcome Y’ALL to NN 2012 In San Antonio, Texas Torch-of-Friendship River-Walk-Dining Shrine of Texas Liberty Henry B. Gonzalez Convention Center

Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/ Light Clusters in Nuclear Matter of Finite Temperature

Fig. 9 Isotopic yield ratios for 64 Ni+ 124 Sn/ 64 Zn+ 112 Sn are shown for α parameter (upper) and β(lower). Fig. 10 Similar plot as Fig.9, but for ( 64 Ni+ 197 Au )/ ( 64 Ni+ 112 Sn)

summary Exp.AMD 300fm/c AMD 2000fm/c LP, NN, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.31+/ β = / α = 0.35+/ β = / α = 0.26+/ β = / LP, NN+PLF, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.34+/ β = / LP, with coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.08+/ β = / α = 2.17+/ β = / LP, without coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α =1.36 +/ β = /-0.12 α = 1.70+/ β = /-0.08 LP, Lijun’s exp. Y( 40 Ar+ 124 Sn)/ Y( 40 Ar+ 112 Sn) α = 0.41+/ β = /-0.11 IMF, Y( 64 Ni+ 124 Sn)/ Y( 64 Zn+ 112 Sn) α = 0.28+/ β = /-0.01 α = 0.42+/ β = /-0.13 α = 0.29+/ β = /-0.13 IMF, with coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.39+/-3.64 β = /-4.40 α =1.88 +/ β = /-0.21 IMF, without coulomb Y( 60 Ca+ 60 Ca)/ Y( 40 Ca+ 40 Ca) α = 3.19+/ β = /-0.59 α = 1.66+/-0.22 β = /-0.31 IMF, Lijun’s exp. Y( 40 Ar+ 124 Sn)/ Y( 40 Ar+ 112 Sn) α = 0.31+/ β = /-0.34

Experimental setup  IMFs were measured by a Si quadrant telescope, backed by four CsI detectors (3cm) at 20°. The Si telescope consisted of four 5cm x 5cm area detectors, having thicknesses 129µm+300µm+1000µm+1000µm ( run) 61µm+300µm+1000µm+1000µm ( run & run) Fig. 1 CsI detectorsFig. 3 Demon detectors (right)Fig. 2 Demon detectors (left) See Talk of Z. Chen