Resilient Distributed Datasets A Fault-Tolerant Abstraction for In-Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Slides:



Advertisements
Similar presentations
Matei Zaharia, in collaboration with Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Cliff Engle, Michael Franklin, Haoyuan Li, Antonio Lupher, Justin Ma,
Advertisements

UC Berkeley a Spark in the cloud iterative and interactive cluster computing Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.
Spark Streaming Large-scale near-real-time stream processing UC BERKELEY Tathagata Das (TD)
Introduction to Spark Internals
Spark Lightning-Fast Cluster Computing UC BERKELEY.
Matei Zaharia University of California, Berkeley Spark in Action Fast Big Data Analytics using Scala UC BERKELEY.
Comp6611 Course Lecture Big data applications Yang PENG Network and System Lab CSE, HKUST Monday, March 11, 2013 Material adapted from.
UC Berkeley Spark Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.
Berkeley Data Analytics Stack (BDAS) Overview Ion Stoica UC Berkeley UC BERKELEY.
Berkeley Data Analytics Stack
Lecture 18-1 Lecture 17-1 Computer Science 425 Distributed Systems CS 425 / ECE 428 Fall 2013 Hilfi Alkaff November 5, 2013 Lecture 21 Stream Processing.
Spark: Cluster Computing with Working Sets
Spark Fast, Interactive, Language-Integrated Cluster Computing Wen Zhiguang
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica Spark Fast, Interactive,
In-Memory Frameworks (and Stream Processing) Aditya Akella.
Overview of Spark project Presented by Yin Zhu Materials from Hadoop in Practice by A.
Discretized Streams: Fault-Tolerant Streaming Computation at Scale Wenting Wang 1.
Spark Fast, Interactive, Language-Integrated Cluster Computing.
Matei Zaharia Large-Scale Matrix Operations Using a Data Flow Engine.
Data-Intensive Computing with MapReduce/Pig Pramod Bhatotia MPI-SWS Distributed Systems – Winter Semester 2014.
Discretized Streams Fault-Tolerant Streaming Computation at Scale Matei Zaharia, Tathagata Das (TD), Haoyuan (HY) Li, Timothy Hunter, Scott Shenker, Ion.
Discretized Streams An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker,
Berkley Data Analysis Stack (BDAS)
Shark Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Hive on Spark.
Fast and Expressive Big Data Analytics with Python
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica Spark Fast, Interactive,
In-Memory Cluster Computing for Iterative and Interactive Applications
Distributed Computations
Mesos A Platform for Fine-Grained Resource Sharing in Data Centers Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy.
Spark Resilient Distributed Datasets:
In-Memory Cluster Computing for Iterative and Interactive Applications
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica Spark Fast, Interactive,
In-Memory Cluster Computing for Iterative and Interactive Applications
Outline | Motivation| Design | Results| Status| Future
Advanced Topics: MapReduce ECE 454 Computer Systems Programming Topics: Reductions Implemented in Distributed Frameworks Distributed Key-Value Stores Hadoop.
UC Berkeley Spark A framework for iterative and interactive cluster computing Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.
Storage in Big Data Systems
Resilient Distributed Datasets (NSDI 2012) A Fault-Tolerant Abstraction for In-Memory Cluster Computing Piccolo (OSDI 2010) Building Fast, Distributed.
Mesos A Platform for Fine-Grained Resource Sharing in the Data Center Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy.
Spark Streaming Large-scale near-real-time stream processing
Spark. Spark ideas expressive computing system, not limited to map-reduce model facilitate system memory – avoid saving intermediate results to disk –
1 CS : Project Suggestions Ion Stoica and Ali Ghodsi ( September 14, 2015.
Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Lecture 7: Practical Computing with Large Data Sets cont. CS 6071 Big Data Engineering, Architecture, and Security Fall 2015, Dr. Rozier Special thanks.
Matei Zaharia Introduction to. Outline The big data problem Spark programming model User community Newest addition: DataFrames.
Data Engineering How MapReduce Works
Berkeley Data Analytics Stack Prof. Chi (Harold) Liu November 2015.
Operating Systems and The Cloud, Part II: Search => Cluster Apps => Scalable Machine Learning David E. Culler CS162 – Operating Systems and Systems Programming.
Matei Zaharia, in collaboration with Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Haoyuan Li, Justin Ma, Murphy McCauley, Joshua Rosen, Reynold Xin,
Spark Debugger Ankur Dave, Matei Zaharia, Murphy McCauley, Scott Shenker, Ion Stoica UC BERKELEY.
Spark System Background Matei Zaharia  [June HotCloud ]  Spark: Cluster Computing with Working Sets  [April NSDI.
Massive Data Processing – In-Memory Computing & Spark Stream Process.
Resilient Distributed Datasets A Fault-Tolerant Abstraction for In-Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
CSCI5570 Large Scale Data Processing Systems Distributed Data Analytics Systems Slide Ack.: modified based on the slides from Matei Zaharia James Cheng.
Spark: Cluster Computing with Working Sets
Presented by Peifeng Yu
Fast, Interactive, Language-Integrated Cluster Computing
Distributed Programming in “Big Data” Systems Pramod Bhatotia wp
Spark Presentation.
Apache Spark Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing Aditya Waghaye October 3, 2016 CS848 – University.
Introduction to Spark.
湖南大学-信息科学与工程学院-计算机与科学系
Cse 344 May 4th – Map/Reduce.
CS110: Discussion about Spark
Apache Spark Lecture by: Faria Kalim (lead TA) CS425, UIUC
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Zaharia, et al (2012)
Apache Spark Lecture by: Faria Kalim (lead TA) CS425 Fall 2018 UIUC
Fast, Interactive, Language-Integrated Cluster Computing
Lecture 29: Distributed Systems
CS639: Data Management for Data Science
Presentation transcript:

Resilient Distributed Datasets A Fault-Tolerant Abstraction for In-Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley UC BERKELEY

Motivation MapReduce greatly simplified “big data” analysis on large, unreliable clusters But as soon as it got popular, users wanted more: »More complex, multi-stage applications (e.g. iterative machine learning & graph processing) »More interactive ad-hoc queries Response: specialized frameworks for some of these apps (e.g. Pregel for graph processing)

Motivation Complex apps and interactive queries both need one thing that MapReduce lacks: Efficient primitives for data sharing In MapReduce, the only way to share data across jobs is stable storage  slow!

Examples iter. 1 iter Input HDFS read HDFS write HDFS read HDFS write Input query 1 query 2 query 3 result 1 result 2 result 3... HDFS read Slow due to replication and disk I/O, but necessary for fault tolerance

iter. 1 iter Input Goal: In-Memory Data Sharing Input query 1 query 2 query 3... one-time processing × faster than network/disk, but how to get FT?

Challenge How to design a distributed memory abstraction that is both fault-tolerant and efficient?

Challenge Existing storage abstractions have interfaces based on fine-grained updates to mutable state »RAMCloud, databases, distributed mem, Piccolo Requires replicating data or logs across nodes for fault tolerance »Costly for data-intensive apps »10-100x slower than memory write

Solution: Resilient Distributed Datasets (RDDs) Restricted form of distributed shared memory »Immutable, partitioned collections of records »Can only be built through coarse-grained deterministic transformations (map, filter, join, …) Efficient fault recovery using lineage »Log one operation to apply to many elements »Recompute lost partitions on failure »No cost if nothing fails

Input query 1 query 2 query 3... RDD Recovery one-time processing iter. 1 iter Input

Generality of RDDs Despite their restrictions, RDDs can express surprisingly many parallel algorithms »These naturally apply the same operation to many items Unify many current programming models »Data flow models: MapReduce, Dryad, SQL, … »Specialized models for iterative apps: BSP (Pregel), iterative MapReduce (Haloop), bulk incremental, … Support new apps that these models don’t

Memory bandwidth Network bandwidth Tradeoff Space Granularity of Updates Write Throughput Fine Coarse LowHigh K-V stores, databases, RAMCloud Best for batch workloads Best for transactional workloads HDFSRDDs

Outline Spark programming interface Implementation Demo How people are using Spark

Spark Programming Interface DryadLINQ-like API in the Scala language Usable interactively from Scala interpreter Provides: »Resilient distributed datasets (RDDs) »Operations on RDDs: transformations (build new RDDs), actions (compute and output results) »Control of each RDD’s partitioning (layout across nodes) and persistence (storage in RAM, on disk, etc)

Example: Log Mining Load error messages from a log into memory, then interactively search for various patterns lines = spark.textFile(“hdfs://...”) errors = lines.filter(_.startsWith(“ERROR”)) messages = errors.map(_.split(‘\t’)(2)) messages.persist() Block 1 Block 2 Block 3 Worker Master messages.filter(_.contains(“foo”)).count messages.filter(_.contains(“bar”)).count tasks results Msgs. 1 Msgs. 2 Msgs. 3 Base RDD Transformed RDD Action Result: full-text search of Wikipedia in <1 sec (vs 20 sec for on-disk data) Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)

RDDs track the graph of transformations that built them (their lineage) to rebuild lost data E.g.: messages = textFile(...).filter(_.contains(“error”)).map(_.split(‘\t’)(2)) HadoopRDD path = hdfs://… HadoopRDD path = hdfs://… FilteredRDD func = _.contains(...) FilteredRDD func = _.contains(...) MappedRDD func = _.split(…) MappedRDD func = _.split(…) Fault Recovery HadoopRDDFilteredRDDMappedRDD

Fault Recovery Results Failure happens

Example: PageRank 1. Start each page with a rank of 1 2. On each iteration, update each page’s rank to Σ i ∈ neighbors rank i / |neighbors i | links = // RDD of (url, neighbors) pairs ranks = // RDD of (url, rank) pairs for (i <- 1 to ITERATIONS) { ranks = links.join(ranks).flatMap { (url, (links, rank)) => links.map(dest => (dest, rank/links.size)) }.reduceByKey(_ + _) }

Optimizing Placement links & ranks repeatedly joined Can co-partition them (e.g. hash both on URL) to avoid shuffles Can also use app knowledge, e.g., hash on DNS name links = links.partitionBy( new URLPartitioner()) reduce Contribs 0 join Contribs 2 Ranks 0 (url, rank) Ranks 0 (url, rank) Links (url, neighbors) Links (url, neighbors)... Ranks 2 reduce Ranks 1

PageRank Performance

Implementation Runs on Mesos [NSDI 11] to share clusters w/ Hadoop Can read from any Hadoop input source (HDFS, S3, …) Spark Hadoop MPI Mesos Node … No changes to Scala language or compiler »Reflection + bytecode analysis to correctly ship code

Programming Models Implemented on Spark RDDs can express many existing parallel models »MapReduce, DryadLINQ »Pregel graph processing [200 LOC] »Iterative MapReduce [200 LOC] »SQL: Hive on Spark (Shark) [in progress] Enables apps to efficiently intermix these models All are based on coarse-grained operations

Demo

Open Source Community 15 contributors, 5+ companies using Spark, 3+ applications projects at Berkeley User applications: »Data mining 40x faster than Hadoop (Conviva) »Exploratory log analysis (Foursquare) »Traffic prediction via EM (Mobile Millennium) »Twitter spam classification (Monarch) »DNA sequence analysis (SNAP) »...

Related Work RAMCloud, Piccolo, GraphLab, parallel DBs »Fine-grained writes requiring replication for resilience Pregel, iterative MapReduce »Specialized models; can’t run arbitrary / ad-hoc queries DryadLINQ, FlumeJava »Language-integrated “distributed dataset” API, but cannot share datasets efficiently across queries Nectar [OSDI 10] »Automatic expression caching, but over distributed FS PacMan [NSDI 12] »Memory cache for HDFS, but writes still go to network/disk

Conclusion RDDs offer a simple and efficient programming model for a broad range of applications Leverage the coarse-grained nature of many parallel algorithms for low-overhead recovery Try it out at

Behavior with Insufficient RAM

Scalability Logistic RegressionK-Means

Breaking Down the Speedup

Spark Operations Transformations (define a new RDD) map filter sample groupByKey reduceByKey sortByKey flatMap union join cogroup cross mapValues Actions (return a result to driver program) collect reduce count save lookupKey

Task Scheduler Dryad-like DAGs Pipelines functions within a stage Locality & data reuse aware Partitioning-aware to avoid shuffles join union groupBy map Stage 3 Stage 1 Stage 2 A: B: C: D: E: F: G: = cached data partition