Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X.

Slides:



Advertisements
Similar presentations
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Advertisements

Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Suman Majumdar Department of Astronomy and Oskar Klein Centre Stockholm University Redshift Space Anisotropies in the EoR 21-cm Signal: what do they tell.
Blazar Gamma-ray absorption by cosmic radiation fields GRB Fermi z~60-6 CTA Susumu Inoue (Kyoto University) with (more than) a little help from my friends.
21cm Constraints on Reionization Benedetta Ciardi MPA T. Di Matteo (CMU), A. Ferrara (SISSA), I. Iliev (CITA), P. Madau (UCSC), A. Maselli (MPA), F. Miniati.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Deciphering the Ancient Universe with Gamma-Ray Bursts Nobuyuki Kawai (Tokyo Tech)
The Dark Age… before the stars, beyond the galaxies…
A New Constraint on the Intergalactic HeII Fraction at z~3 Matt McQuinn Einstein Fellows Symposium.
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Cardelli, J. A., Clayton, G. C. & Mathis, J. S The Relationship between Infrared, Optical, and Ultraviolet Extinction. Astrophysical Journal 345:
Rand (2000) NGC 5775 Hα map. D = 24.8 Mpc It is an interacting galaxy.
Recycling the Intergalactic Medium
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
GRBs as Probes of First Light and the Reionization History of the Universe D. Q. Lamb (U. Chicago) Conference on First Light and Reionization Irvine, CA,
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Large Scale Simulations of Reionization Garrelt Mellema Stockholm Observatory Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
14/06/2007 Sebastiano Cantalupo - HCRI Allahabad QSO proximity regions in Lyα emission (and absorption) during HI Reionization Sebastiano Cantalupo.
Dark Ages of Astronomy (Dark to Light) 2 Dark Ages z=1000 z=5.8 z=0.
The Host Galaxies of High-Redshift GRBs Edo Berger Harvard University.
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
The First Constraint on the Reionization from GRBs: the Case of GRB Tomonori Totani (Kyoto) Nobuyuki Kawai, George Kosugi, Kentaro Aoki, Toru Yamada,
Nick Gnedin (Once More About Reionization)
CMB Polarization from Patchy Reionization Gil Holder.
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
Ranga-Ram Chary, Oct ’08 The First Billion Years of Galaxy Evolution Ranga-Ram Chary Spitzer Science Center/Planck Data Center California Institute of.
History of Cosmological Reionization
The Detectability of Lyα Emission from Galaxies during the Epoch of Reionization Dijkstra, Mesinger, Wyithe. JC Alex Fry.
1 Narrow-Band Imaging surveys at z=7.7 with WIRCam (CFHT) and HAWK-I (VLT) J.-G. Cuby (LAM) Collaborators : B. Clément (LAM), P. Hibon (KIAS) J.Willis.
Observational Constraints of of Reionization History in the JWST Era Observational Constraints of of Reionization History in the JWST Era Xiaohui Fan University.
The z > 5 Lyα forest at high resolution George Becker (Caltech) Wal Sargent (Caltech), Michael Rauch (OCIW), Rob Simcoe (MIT) IAU 199 March 18, 2005.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
GMT2010 Workshop 12 Years Ago, JWST (NGST) Deep Field Simulation (2’ x 2’) Im & Stockman (1998)
Lyman- Emission from The Intergalactic Medium
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Cosmic radiative feedback from reionization By Ruben Salvaterra (OA-Brera) C. Burigana (IASF-Bologna) R. Schneider (OA-Firenze) T. Choudhury (Cambridge)
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
The Twilight Zone of Reionization Steve Furlanetto Yale University March 13, 2006 Steve Furlanetto Yale University March 13, 2006 Collaborators: F. Briggs,
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Quasar Surveys -- From Sloan to SNAP
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
First Stars and Reionization Andrea Ferrara SISSA/International School for Advanced Studies Trieste, Italy Five Answers for Five Questions.
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Mitesh Patel Co-Authors: Steve Warren, Daniel Mortlock, Bram Venemans, Richard McMahon, Paul Hewett, Chris Simpson, Rob Sharpe
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
Proximity Effect Around High-redshift Galaxies
A luminous quasar at a redshift of z = 7.085
A modest overview of HIGH-REDSHIFT DUST Simona Gallerani
Cosmology With The Lyα Forest
Dust Formation and Survival in Supernova Ejecta
Lecture 6: Gamma-Ray Bursts Light extinction: Infrared background.
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
GRB : high-z GRBs as a new tool to study the reionization epoch
Probing Reionization & Galaxy Evolution by High-z Lyα Emitters
Constraint on Cosmic Reionization from High-z QSO Spectra
Presentation transcript:

Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X. Fan, A. Ferrara, A. Maselli, R. Salvaterra COSMOLOGICAL REIONIZATION CONFERENCE Harish-Chandra Research Institute, Allahabad, 16 February 2010 Astronomical Observatory of Rome

DAVID The Dark Ages VIrtual Department S. Bianchi INAF/Arcetri B. Ciardi MPA P. Dayal SISSA C. Evoli SISSA A. Ferrara SNS Pisa S. Gallerani INAF/Roma F. Iocco IAP F. Kitaura SNS Pisa A.Maselli INAF/Arcetri R. Salvaterra INAF/Milano S. Salvadori KAI Groningen R. Schneider INAF/Arcetri M. Valdes IPMU R. Valiante Univ. Firenze

QSOs constraints on cosmic reionization SDSS +CFHQS ~40 5.7<z<6.4 Fan et al. (2005) in contrast with WMAP Komatsu et al. (2009 / 2010) Becker et al. (2003)

Modeling reionization Choudhury & Ferrara (2005/2006) Free parameters: Log-Normal modelQSOs, PopII, PopIII

Reionization models EARLY REIONIZATION (ERM)LATE REIONIZATION (LRM) Volume Filling Factor Photo- Ionization Rate ERM LRM Data from McDonald & Miralda-Escude’(2001); Bolton etal. (2005/2007); Fan etal.(2006) Highly ionized IGM at z=6Two-phase IGM at z >6

Statistics of the transmitted flux Data from Fan etal. (2002); Songaila (2004); Fan etal.(2006) ERM LRM Fan et al. (2006) Songaila (2004)

Gaps in the Lyα forest ERM LRM GAPS SG, Choudhury, Ferrara (2006) Largest gap width distribution

Comparison with 20 QSOs at 5.7 < z < 6.4 (Fan et al. 2006) ERM LRM SG, Ferrara, Fan, Choudhury 2008

Largest gap width distribution ERM LRM LR SG, Ferrara, Fan, Choudhury Comparison with 20 QSOs at 5.7 < z < 6.4 (Fan et al. 2006)

Transverse proximity effect Proximity effect along the line of sight Transverse proximity effect Gunn-Peterson through foreground QSO background QSO

First-ever detection of the Transverse Proximity Effect in the HI Lyα forest Mahabal et al. (2005) Fan et al. (2006) QSO1 QSO2 RD J Mpc Peak Spectral Density See also Worseck et al TPE SG, Ferrara, Fan, Choudhury (2008)

Observed absorption spectrum of z=6.3 Kawai et al. (2006) 52 Å

Observed absorption spectrum of z=6.3 Kawai et al. (2006) 142 Å

Observed absorption spectrum of z=6.3 Kawai et al. (2006) 190 Å DLA Totani et al. (2006)

Largest gap probability isocontours: GRBs SG, Salvaterra, Ferrara, Choudhury (2008) The ERM is 10 times more probable wrt the LRM The gap sizes are consistent with x HI ~ % 10% 40% 5% 10% 40% In agreement with Totani et al. (2006)

Conclusions: An Early Reionization Model First-ever detection of the transverse proximity effect in the HI Lyα forest along the line of sight towards the highest–z QSO known.  The analysis of the GRB at z=6.3 confirms the results found in QSO studies. In particular, the gap size along the observed line of sight is consistent with x HI ~  Current observational data of QSO absorption spectra do not require any sudden change in the IGM ionization z~6, instead favour a highly ionized IGM at these epochs.  Further applications of the Early Reionization Model: Quasar HII regions  see Maselli’s talk (in the afternoon) Lyα emitters luminosity function  see Dayal’s talk (tomorrow)  The overall result points towards an extended reionization process which starts at z>=11 and completes at z>=7, in agreement with WMAP data.

Transverse proximity effect: observations vs simulations Peak Spectral Density

PEAKS Conclusions Transverse proximity effect in the LOS towards the highest –z QSO.  Observed peaks are much larger than simulated ones   Lower limit on the foreground QSO lifetime

Log-Normal model: observational confirmation

(Becker et al. 2006) Miralda-Escude’ et al (2000)

Log-Normal model vs MHR00 at z=6 Miralda-Escude’ et al (2000)

Log-Normal model vs MHR00 Miralda-Escude’ et al (2000)

Gap width distribution SG, Choudhury, Ferrara (2006)

LARGEST Gap width distribution SG, Choudhury, Ferrara (2006)

Gap width distribution: LogNormal vs HYDROPM simulations SG, Choudhury, Ferrara (2006)

Modelling a late reionization scenario LRM random distribution of neutral regions LRMc clustering of neutral pixels redshift

Largest dark gap distribution Gallerani S., Choudhury T., Ferrara A. (2006)

2D Maps of neutral hydrogen distribution (Ciardi, Ferrara & White 2003) Should the distribution of neutral regions depend on the clustering of ionizing sources? Clustering of ionizing sources might not be correlated significantly with neutral regions in the case of a very high filling factor. Ionizing sources Left over by reionization

Transmissivity windows from HII regions PEAK FREQUENCY & SIZE MASS OF DM HALOS HOSTING THE IONIZING SOURCES

Size Frequency Hints on the mass of DM halos hosting high-z QSOs Discrepancy It is unlik  ely that QSOs HII regions produce peaks consistent with data, unless they reside in highly overdense regions. Mo & White (2002)

Observations 5.99 J J J J J J J J J J J J J J J J Fan et al. (2006) Low Redshift (LR) High Redshift (HR)

Dark gaps statistics Dark gaps: “contiguous regions of the spectrum with  > 2.5 over rest frame wavelength intervals greater then 1Å”. Data from Songaila & Cowie (2002) Simulated spectra Observed spectra GAP

Transverse proximity effect: observations Mahabal et al. (2005) Fan et al. (2006) QSO1 QSO2 RD J Mpc

Transverse proximity effect: observations Mahabal et al. (2005) Fan et al. (2006) QSO1 QSO2 RD J Mpc Yu (2005) Shapiro et al. (2006) White et al. (2003) Wyithe et al. (2005)

Transverse proximity effect: simulations HII Regions (case B) Underdense Regions (case A) Peaks origin: SG, Ferrara, Fan, Choudhury (2007) Peak Spectral Density

Transverse proximity effect: observations vs simulations