Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment.

Slides:



Advertisements
Similar presentations
Overview for an European Strategy for neutrino Physics Yves Déclais CNRS/IN2P3/UCBL IPN Lyon Measuring the neutrino mixing matrix Reactor experiments NUMI.
Advertisements

R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Soo-Bong Kim Seoul National Univ. Current Status of RENO (Symposium on “Physics of Massive Neutrinos” May 20-22, 2008, Milos, Greece)
Christian Buck, MPIK Heidelberg LAUNCH 09 November, 11th 2009 The Double Chooz reactor neutrino experiment.
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
The Double-Chooz project of experiment for the last undetermined mixing angle  13 Thierry Lasserre (Saclay & APC) & H. de Kerret (APC) 09/02/04, Paris.
Gd Liquid scintillator: completion of the R&D! Stability 0,1 % Gd in PXE LENS R&D  new metal β-diketone molecule (MPIK) Stable: 0.1% Gd-Acac (few months)
Liquid Scintillator R&D for RENO Lee, Jaison For RENO Collaboration.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Jun Cao Institute of High Energy Physics, Beijing Daya Bay Neutrino Experiment 3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National.
Reactor Neutrino Experiments Jun Cao Institute of High Energy Physics Lepton-Photon 2007, Daegu, Aug , 2007.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Simulation study of RENO-50 Jungsic Park Seoul National University RENO-50 International Workshop June 13-14, 2013 Hoam Faculty House, Korea.
Eun-Ju Jeon Sejong Univ. Sept. 09, 2010 Status of RENO Experiment Neutrino Oscillation Workshop (NOW 2010) September 4-11, 2010, Otranto, Lecce, Italy.
Soo-Bong Kim Seoul National Univ. RENO for Neutrino Mixing Angle  13 5 th International Workshop on Low Energy Neutrino Physcis (Neutrino Champagne LowNu.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
Double Chooz A Reactor θ 13 Experiment M.Motoki Tohoku Univ. On behalf of the Double Chooz Collaboration Reactor θ 13 measurementReactor θ 13 measurement.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
SYSTEMATICS (preliminary consideration) V. Sinev for Kurchatov Institute Neutrino group.
A detector design for the Daya Bay reactor neutrino experiment Yifang Wang Institute of High Energy Physics, Beijing Jan. 18, 2004.
Using Reactor Neutrinos to Study Neutrino Oscillations Jonathan Link Columbia University Heavy Quarks and Leptons 2004 Heavy Quarks and Leptons 2004 June.
RENO and the Last Result
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
RENO for Neutrino Mixing Angle q13
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
Park Kang Soon Seokyeong Univ. Status of the RENO San Clemente, Pelugia Sep , 2009.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Double-Chooz A search for  13 Guillaume MENTION (PCC-Collège de France/APC) On behalf of the Double-Chooz collaboration NOW 2004 Conca Specchiulla, Italy.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
Past Reactor Experiments (Some Lessons From History)
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
The Quest for θ 13 with the Double Chooz Detector Jelena Maričić Drexel University On behalf of On behalf of the Double Chooz Collaboration.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Update of Gd-LS R&D at IHEP Ding Yayun, Zhang Zhiyong, Cao Jun Institute of High Energy Physics, Chinese Academy of Sciences.
Search for Sterile Neutrino Oscillations with MiniBooNE
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Summary of the Reactor/  13 Meeting At College de France, Paris April 22-23, 2003 Thierry Lasserre On Behalf the reactor/  13 “european” working group.
Jun Cao Jan. 18, 2004 Daya Bay neutrino experiment workshop (Beijing) Detector Module Simulation and Baseline Optimization ● Determine module geometric.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Θ 13 and CP-Violation in the Lepton Sector SEESAW25 Institut Henri Poincaré, Paris Caren Hagner Universität Hamburg SEESAW25 Institut Henri Poincaré, Paris.
A New Experiment To Measure θ 13 David Reyna Argonne National Laboratory.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Karsten Heeger, Univ. of Wisconsin Yale University, March 1, 2010  13 from Global Fits current best limit sin 2 2θ 13 < CL Fogli, et al., arXiv:0905:3549.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Double Chooz Optimizing Chooz for a possible Theta 13 measurement Steven Dazeley (Louisiana State University) NuFact05 Rome.
Results on  13 Neutrino Oscillations from Reactor Experiments Soo-Bong Kim (KNRC, Seoul National University) “INPC 2013, Firenze, June 2-7, 2013”
Status and Prospects of Reactor Neutrino Experiments Soo-Bong Kim (KNRC, Seoul National University) “NuPhys 2014: Prospects in Neutrino Physics, London,
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
Synthesis of plastic scintillator and applications Ildefonso León Monzón Universidad Autónoma de Sinaloa Centro de Investigación y de Estudios Avanzados.
Christian Buck, MPIK Heidelberg LowNu Reims, October 2009 Liquid scintillators.
The Double Chooz reactor neutrino experiment
Fast neutron flux measurement in CJPL
NEUTRINO OSCILLATION MEASUREMENTS WITH REACTORS
Simulation for DayaBay Detectors
BNL Neutrino/Nuclear Chemistry Group
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Current Results from Reactor Neutrino Experiments
Anti-Neutrino Simulations
Daya Bay Neutrino Experiment
Presentation transcript:

Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment

Outline  Motivation  The Double Chooz Concept and Design  Scintillator development at MPIK  Summary

Why Double Chooz ?  Improved knowledge of mixing matrix  Θ 13 controls 3 flavor effects (e.g. CP violation only for Θ 13 > 0)  Discovery potential: models often close to experimental bound  Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future experiments  Discrimination power for normal hierarchy in 0νββ depends on Θ 13 Δm sol 2 ~ 8∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.86 Δm atm 2 ~ 2.5∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ

 Interest of International Atomic Energy Agency (IAEA) in ν e detection -Monitoring of single reactors -Monitoring of countries  Intensity and shape of spectrum depend on isotopic composition  Pu content!  Use Double Chooz near detector as prototype for reactor monitoring  Thermal power (1% ?) Non-proliferation

Current proposals  December 2002: 1st European meeting, MPIK  April 2003 – February 2005: 4 int. workshops in U.S., Germany, Japan and Brazil  1st Double Chooz Meeting: Nov 2003 Angra Double-Chooz Kaska Daya bay RENO

Double Chooz collaboration  Spokesman: H. de Kerret (APC)  France: CEA/Dapnia Saclay, APC, Subatech (Nantes)  Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen  Italy: LNGS (Gran Sasso)  Russia: RAS, Kurchatov Institute (Moscow)  USA: Alabama, ANL, Chicago, Drexel, Kansas State, LLNL, LSU, Notre Dame, Tennessee  Spain: CIEMAT  Japan: HIT, Kobe, MUE, Niigata, Tohoku, TGU, TIT, TMU  England: University of Oxford

The Double Chooz concept ν ν ν ν ν ν ν ν 1051 m 280 m Site location: France D near D far

The labs Far detector (300 m w.e., 1.05 km)Near detector (75 m w.e., 280 m) Δm 2 atm = 2.8·10 -3 eV 2 (MINOS best fit) Constant flux ratios

Improving Chooz 0.3 %1.5 %Det.eff. < 0.6%2.7 %Σ system. 0.4%2.8%Statistical 0.2 %0.8 %# protons <0.1 %0.7 %Power <0.1 %0.6 %E/fission <0.1 %1.9 %Flux, σ DCChoozerror CHOOZ limit sin 2 (2θ 13 ) < 0.12 – 0.20 R = 1.01  2.8%(stat)  2.7%(syst) Reactor Detector Δm 2 (eV) 2 sin 2 (2Θ)

Sensitivity 2008 Sensitivity 2008 – 2013 (near detector starts 16 months after far) for  m 2 atm = 2.8·10 -3 eV 2

Detector design TARGET: (th = 2,3m) - Acrylic vessel (th = 8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher: (th = 0,55m) -Acrylic vessel (th = 12mm) - 22,6 m 3 LS Buffer: (th = 1,05m) -Steel vessel (th = 3 mm) -114 m 3 mineral oil Inner veto: (th = 0,5m) -Steel vessel th = 10 mm) -~80 m 3 LS SHIELDING (th = 17 cm) - Steel 7m

Neutrino signal n e p 511 keV e+e+  ~ 8 MeV Gd Target: Gd-loaded liquid scintillator Events/200 KeV/3 years sin 2 (2  13 )=0.04 sin 2 (2  13 )=0.1 sin 2 (2  13 )=0.2 Energy [MeV] Neutrino rates: - far: ~70/day - near: ~1000/day

Correlated backgrounds n  ~ 8 MeV n deposits energy Gd Fast neutrons Chooz rate: ~1/day Double Chooz simulation:  Far: N b < 0.6/day (90% CL)  Near: N b ~ 3.3/day (90% CL) β-n-cascades (spallation products: 9 Li, 11 Li, 8 He) Expected rate: Far: 1.4/day, Near: 9/day Long-lived

Mockup  Goal: - Find technical solutions - Define interfaces - Material compatiblity - Test filling procedure  Volumes: liter Target liter Gamma Catcher liter Buffer  Match scintillator properties: - Densities (1 % in DC) - Light yield

Filling system  Simultaneous filling  Air driven pumps  Tubing and valves PFA  Filling 2005 MPIK-HD

Mockup results  Gd-concentration unchanged  Optical properties stable

Metal loaded scintillators  Development at MPIK since 2000 (C.Buck, F.X.Hartmann, D.Motta, T.Lasserre, S.Schönert, U.Schwan)  Wide interest in different fields: -Solar neutrino physics (In, Yb,…) -Reactors experiments (Gd) -Geo-neutrinos (Gd) -0νββ-decay ( 150 Nd)

Scintillator development at MPIK Metal-β-diketonates: R1R1 3+ M R2R2 O O O O O O HC - C-C- H C-C- H R1R1 R1R1 R2R2 R2R2 How to dissolve metal in organic scintillator?  Method 1: Organometallic compound Requirements:  solubility  no light quenching  optical transparency  radiopurity  low reactivity (stability!) Method 2: Carboxylate system stabilized by pH (since 2000)

Attenuation length / stability  Stability tests up to 3 years  Tests of concentrates  Temperature tests  Cross check in Saclay  Measured by UV/Vis  10 cm cells  Absorption + Scattering!  No fluors: > 10 m in ROI ROI

Scintillator stability Palo Verde: A.G.Piepke, S.W.Moser, V.M.Novikov NIM A 342 (1999) Chooz: Time variation fit of attenuation length: Parameter v Chooz: (4.2 ± 0.4)∙10 -3 /d * BDK-system: ≤ 7.5∙10 -5 /d * Chooz Coll., Eur. Phys. J. C27, (2003) [v = (1.5 – 2.8)·10 -3 /d)]

Scintillator system Excitation by ionizing particle PMT Metal Secondary wavel. shifter Fluorsolvent

Gd complex  Approach: Gd-β-diketone  Purification by sublimation  Full scale production started! 8· · < 2.4· Conc. [g/g] < 0.03A/det. [Bq] Th 0.005< A/kg [Bq] KU GeMPI at LNGS (M.Laubenstein)

Scintillator solvent PXE/dodecane mixture (20/80 Vol):  Optimized ratio - PXE improves light yield - Dodecane improves material compatibility + number of H  Column purification  High flash point, low toxicity  Solvents used in KamLand (Dodecane), Borexino (PXE in CTF)  Backup Linear alkylbenzene

Fluor choice Primary fluor properties:  Light yield  Emission spectrum  Energy transfer parameters  Transparency  Radiopurity Scintillator emission spectrum

Energy transfer model M  DA * excitation M M M O C H In O O O O O Me. C.Buck, F.X.Hartmann, D.Motta, S.Schönert, Chem.Phys.Lett.435 (2007) 252 – 256 Developed for Indium system

Scintillator Summary  2000 – 2003: Development metal loaded scintillator (In, Yb, Nd, Gd)  2003: First tests Gd-loaded scintillators –Gd(acac) 3 scintillator –pH controlled carboxylate (TMHA) scintillator  2004: Optimization synthesis  2005: Double Chooz mockup  2006: Outsourcing of Gd-BDK production –Successful sublimation at company –First radiopurity measurements

Summer 2006: New division 3 x 24m 3 Iso-containersLarge scale production Gd-material Scintillator building 60 m³ liquids

Scintillator hall Dec 06Jan 07 Feb 07Mar 07

Summary  Double Chooz searches for the neutrino mixing angle θ 13 - Sensitivity: sin 2 (2Θ 13 ) < (90% CL) (Chooz bound sin 2 (2Θ 13 ) < 0.2) - Start data taking: 2008  Main hardware contribution of MPIK: -Development + production target Gd-scintillator (10.3 m³) -Tuning + production of γ-catcher scintillator (22 m³) -Design and construction scintillator mixing system  Status -Major components ordered -Construction of scintillator hall