Chapter 6 A Tour of the Cell. Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can.

Slides:



Advertisements
Similar presentations
THE CELL.
Advertisements

Lysosomes: Digestive Compartments
What is the primary functions of the nucleus?
-Chapter 7 –The Cell Answer the “Key Concept” Questions for Each Section. Period 1 Lab (Quiz) date = Wednesday November 12 Test Date= Friday November 14.
Announcements ● Tutoring Center SCI I, 407 M 12-3, 5:30-6:30; W 8-9, 5:30-6:30, Th 8-12, 6-7; F 8-9 ● MasteringBiology Assignment due Tuesday 4/19 ● Exam.
Microscopy In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image The quality of an.
Tour of the Cell. Robert Hooke ( ) Robert Hooke : examined thinly sliced cork and coined term “cell”
Copyright © 2006 Cynthia Garrard publishing under Canyon Design Chapter 6 - Cells Overview: The Importance of Cells All organisms are made of cells The.
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
Lecture 2 Outline (Ch. 6) I. Cell Background II. Organelles
A tour of the cell.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings CHAPTER 6 THE STRUCTURE AND FUNCTION OF THE CELL All living things are composed.
Read Chapter 4 (all of it) you have a test soon!.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending.
4 A Tour of the Cell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig. 6-7 TEM of a plasma membrane (a) (b) Structure of the plasma membrane Outside of cell Inside of cell 0.1 µm Hydrophilic region Hydrophobic region.
LE 7-2 Hydrophilic head Hydrophobic tail WATER. LE 7-3 Hydrophilic region of protein Hydrophobic region of protein Phospholipid bilayer.
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
Ch. 7 Diagrams Cell Structure. Figure m 1 m 0.1 m 1 cm 1 mm 100  m 10  m 1  m 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins.
 Nucleus: contains most of the genes that control entire cell 1. Nuclear envelope: double membrane, encloses nucleus, regulates molecular traffic by.
Fig m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 4 Organization of the Cell.
Prokaryotic Cells Eukaryotic Cells domains Bacteria & Archaea 1-10 μm
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Characteristics of Life 1.Living things are highly organized 2.Living.
Cells.
Cells: INTRODUCTION. I. Overview Prokaryotic vs. Eukaryotic cells –A. Prokaryotic Cells 1. Small, 1-10 micrometers in diameter 2. Lack membrane-enclosed.
CYTOLOGY & HISTOLOGY Lecture two
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture for Chapter 4 DNA organization Endomembrane System.
Organization of the Cell
Chapter 6 A Tour of the Cell. Things to Know The differences between eukaryotic and prokaryotic cells The structure and function of organelles common.
Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that.
Chapter 6: Types of Cells and Cell Structures
A TOUR OF THE CELL Chapter 6. The Fundamental Units of Life What do a small compartment in a honeycomb, a prison room, and the area covered by a mobile.
Basic Unit of Life Cell Song. Principles of Cell Theory 1. Cells are basic units of life 2. Biogenesis - All Cells arise from other cells 3. Energy flow.
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria Mitochondrion.
Cell Structure Revised by Bryant Wong. Cell Theory  All organisms are composed of one or more cells  Cells are the smallest living things  Cells come.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Importance of Cells All organisms are made of cells The cell is the simplest.
A Tour of the Cell Chapter 6. Overview: The Importance of Cells  Cell Theory: All organisms are made of cells  The cell is the simplest collection of.
Chapter 4. Most Cells Are Microscopic Effect of Cell Size on Surface Area.
CELLS CELLS. CELL THEORY Living things are composed of cells (multicellular organisms) Cells are the smallest unit of life (single celled organisms –
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings A Tour of the Cell.
AP Exam Review Cells. Prokaryotic vs. Eukaryotic Cells Prokaryote Prokaryote “before” “nucleus” “before” “nucleus” Bacteria Bacteria DNA is concentrated.
Ch.7 A Tour of the Cell. Nucleus Genetic material... chromatin chromosomesnucleolus: rRNA; ribosome synthesis Double membrane envelope with pores Protein.
Chapter 6 A (more detailed) Tour of the Cell. Nucleus: Chromatin v. chromosomes Nucleolus synthesizes ribosomes Nuclear pores.
Cells Chapter 7. The size range of cells Why are cells so small? Small cells have a high surface area to volume ratio which allows more stuff to move.
Lecture #2 Cellular Anatomy. Intermediate filaments ENDOPLASMIC RETICULUM (ER) Rough ERSmooth ER Centrosome CYTOSKELETON Microfilaments Microtubules Microvilli.
Chapter 6 A Tour of the Cell. Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM),
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Chapter 4 A View of the Cell. Cell History The microscope was invented in the 17th century Using a microscope, Robert Hooke discovered cells in 1665 All.
Structures and functions of subcellular organelles Chapter-2.
Here it is…the structure!...the function!
Chapter 6 A Tour of the Cell.
Chapter 6 A Tour of the Cell.
A TOUR OF THE CELL OVERVIEW
4.2 Parts of the Eukaryotic Cell
Chapter 6 A Tour of the Cell.
6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and
Chapter 6 Part B A tour of The Cell.
Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism is one of two.
Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism.
Chapter 6 A Tour of the Cell.
6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and
Eukaryotic Cells Eukaryotic cells are characterized by having
Components of the endomembrane system:
Chapter 6 A Tour of the Cell.
Chapter 6 Part B A tour of The Cell.
Presentation transcript:

Chapter 6 A Tour of the Cell

Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function All cells are related by their descent from earlier cells

Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image The minimum resolution of an LM is about 200 nanometers (nm), the size of a small bacterium

LE 6-2 Measurements 1 centimeter (cm) = 10 –2 meter (m) = 0.4 inch 1 millimeter (mm) = 10 –3 m 1 micrometer (µm) = 10 –3 mm = 10 –6 m 1 nanometer (nm) = 10 –3 µm = 10 –9 m 10 m 1 m Human height Length of some nerve and muscle cells Chicken egg 0.1 m 1 cm Frog egg 1 mm 100 µm Most plant and animal cells 10 µm Nucleus 1 µm Most bacteria Mitochondrion Smallest bacteria Viruses 100 nm 10 nm Ribosomes Proteins Lipids 1 nm Small molecules Atoms 0.1 nm Unaided eye Light microscope Electron microscope

LMs can magnify effectively to about 1,000 times the size of the actual specimen Various techniques enhance contrast and enable cell components to be stained or labeled Most subcellular structures, or organelles, are too small to be resolved by a LM

LE 6-3a Brightfield (unstained specimen) 50 µm Brightfield (stained specimen) Phase-contrast

Two basic types of electron microscopes (EMs) are used to study subcellular structures Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, providing images that look 3D Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen TEMs are used mainly to study the internal ultrastructure of cells

Isolating Organelles by Cell Fractionation Cell fractionation takes cells apart and separates the major organelles from one another Ultracentrifuges fractionate cells into their component parts Cell fractionation enables scientists to determine the functions of organelles

LE 6-5a Homogenization Homogenate Tissue cells Differential centrifugation

LE 6-5b Pellet rich in nuclei and cellular debris Pellet rich in mitochondria (and chloro- plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes 150,000 g 3 hr 80,000 g 60 min 20,000 g 20 min 1000 g (1000 times the force of gravity) 10 min Supernatant poured into next tube

Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic Only organisms of the domains Bacteria and Archaea consist of prokaryotic cells Protists, fungi, animals, and plants all consist of eukaryotic cells

Comparing Prokaryotic and Eukaryotic Cells Basic features of all cells: – Plasma membrane – Semifluid substance called the cytosol – Chromosomes (carry genes) – Ribosomes (make proteins)

Prokaryotic cells have no nucleus In a prokaryotic cell, DNA is in an unbound region called the nucleoid Prokaryotic cells lack membrane-bound organelles

LE 6-6 A typical rod-shaped bacterium A thin section through the bacterium Bacillus coagulans (TEM) 0.5 µm Pili Nucleoid Ribosomes Plasma membrane Cell wall Capsule Flagella Bacterial chromosome

Eukaryotic cells have DNA in a nucleus that is bounded by a membranous nuclear envelope Eukaryotic cells have membrane-bound organelles Eukaryotic cells are generally much larger than prokaryotic cells The logistics of carrying out cellular metabolism sets limits on the size of cells

LE 6-7 Total surface area (height x width x number of sides x number of boxes) Total volume (height x width x length X number of boxes) Surface-to-volume ratio (surface area  volume) Surface area increases while Total volume remains constant

The plasma membrane is a selective barrier that allows sufficient passage of oxygen, nutrients, and waste to service the volume of the cell The general structure of a biological membrane is a double layer of phospholipids

LE 6-8 Hydrophilic region Hydrophobic region Carbohydrate side chain Structure of the plasma membrane Hydrophilic region Phospholipid Proteins Outside of cell Inside of cell 0.1 µm TEM of a plasma membrane

A Panoramic View of the Eukaryotic Cell A eukaryotic cell has internal membranes that partition the cell into organelles Plant and animal cells have most of the same organelles

LE 6-9a Flagellum Centrosome CYTOSKELETON Microfilaments Intermediate filaments Microtubules Peroxisome Microvilli ENDOPLASMIC RETICULUM (ER Rough ER Smooth ER Mitochondrion Lysosome Golgi apparatus Ribosomes: Plasma membrane Nuclear envelope NUCLEUS In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm) Nucleolus Chromatin

LE 6-9b Rough endoplasmic reticulum In plant cells but not animal cells: Chloroplasts Central vacuole and tonoplast Cell wall Plasmodesmata Smooth endoplasmic reticulum Ribosomes (small brown dots) Central vacuole Microfilaments Intermediate filaments Microtubules CYTOSKELETON Chloroplast Plasmodesmata Wall of adjacent cell Cell wall Nuclear envelope Nucleolus Chromatin NUCLEUS Centrosome Golgi apparatus Mitochondrion Peroxisome Plasma membrane

Concept 6.3: The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes The nucleus contains most of the DNA in a eukaryotic cell Ribosomes use the information from the DNA to make proteins

The Nucleus: Genetic Library of the Cell The nucleus contains most of the cell’s genes and is usually the most conspicuous organelle The nuclear envelope encloses the nucleus, separating it from the cytoplasm

LE 6-10 Close-up of nuclear envelope Nucleus Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Ribosome Pore complexes (TEM)Nuclear lamina (TEM) 1 µm Rough ER Nucleus 1 µm 0.25 µm Surface of nuclear envelope

Ribosomes: Protein Factories in the Cell Ribosomes are particles made of ribosomal RNA and protein Ribosomes carry out protein synthesis in two locations: – In the cytosol (free ribosomes) – On the outside of the endoplasmic reticulum (ER) or the nuclear envelope (bound ribosomes)

LE 6-11 Ribosomes 0.5 µm ER Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Small subunit Diagram of a ribosome TEM showing ER and ribosomes

Concept 6.4: The endomembrane system regulates protein traffic and performs metabolic functions in the cell Components of the endomembrane system: – Nuclear envelope – Endoplasmic reticulum – Golgi apparatus – Lysosomes – Vacuoles – Plasma membrane These components are either continuous or connected via transfer by vesicles

The Endoplasmic Reticulum: Biosynthetic Factory The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells The ER membrane is continuous with the nuclear envelope There are two distinct regions of ER: – Smooth ER, which lacks ribosomes – Rough ER, with ribosomes studding its surface

LE 6-12 Ribosomes Smooth ER Rough ER ER lumen Cisternae Transport vesicle Smooth ER Rough ER Transitional ER 200 nm Nuclear envelope

Functions of Smooth ER The smooth ER – Synthesizes lipids – Metabolizes carbohydrates – Stores calcium – Detoxifies poison

Functions of Rough ER The rough ER – Has bound ribosomes – Produces proteins and membranes, which are distributed by transport vesicles – Is a membrane factory for the cell

The Golgi apparatus consists of flattened membranous sacs called cisternae Functions of the Golgi apparatus: – Modifies products of the ER – Manufactures certain macromolecules – Sorts and packages materials into transport vesicles The Golgi Apparatus: Shipping and Receiving Center

LE 6-13 trans face (“shipping” side of Golgi apparatus) TEM of Golgi apparatus 0.1 µm Golgi apparatus cis face (“receiving” side of Golgi apparatus) Vesicles coalesce to form new cis Golgi cisternae Vesicles also transport certain proteins back to ER Vesicles move from ER to Golgi Vesicles transport specific proteins backward to newer Golgi cisternae Cisternal maturation: Golgi cisternae move in a cis- to-trans direction Vesicles form and leave Golgi, carrying specific proteins to other locations or to the plasma mem- brane for secretion Cisternae

Lysosomes: Digestive Compartments A lysosome is a membranous sac of hydrolytic enzymes Lysosomal enzymes can hydrolyze proteins, fats, polysaccharides, and nucleic acids Lysosomes also use enzymes to recycle organelles and macromolecules, a process called autophagy Animation: Lysosome Formation Animation: Lysosome Formation

LE 6-14a Phagocytosis: lysosome digesting food 1 µm Plasma membrane Food vacuole Lysosome Nucleus Digestive enzymes Digestion Lysosome Lysosome contains active hydrolytic enzymes Food vacuole fuses with lysosome Hydrolytic enzymes digest food particles

LE 6-14b Autophagy: lysosome breaking down damaged organelle 1 µm Vesicle containing damaged mitochondrion Mitochondrion fragment Lysosome containing two damaged organelles Digestion Lysosome Lysosome fuses with vesicle containing damaged organelle Peroxisome fragment Hydrolytic enzymes digest organelle components

Vacuoles: Diverse Maintenance Compartments Vesicles and vacuoles (larger versions of vacuoles) are membrane-bound sacs with varied functions A plant cell or fungal cell may have one or several vacuoles

Food vacuoles are formed by phagocytosis Contractile vacuoles, found in many freshwater protists, pump excess water out of cells Central vacuoles, found in many mature plant cells, hold organic compounds and water Video: Paramecium Vacuole Video: Paramecium Vacuole

Concept 6.5: Mitochondria and chloroplasts change energy from one form to another Mitochondria are the sites of cellular respiration Chloroplasts, found only in plants and algae, are the sites of photosynthesis Mitochondria and chloroplasts are not part of the endomembrane system Peroxisomes are oxidative organelles

Mitochondria: Chemical Energy Conversion Mitochondria are in nearly all eukaryotic cells They have a smooth outer membrane and an inner membrane folded into cristae The inner membrane creates two compartments: intermembrane space and mitochondrial matrix Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix Cristae present a large surface area for enzymes that synthesize ATP

LE 6-17 Mitochondrion Intermembrane space Outer membrane Inner membrane Cristae Matrix 100 nm Mitochondrial DNA Free ribosomes in the mitochondrial matrix

Chloroplasts: Capture of Light Energy The chloroplast is a member of a family of organelles called plastids Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis Chloroplasts are found in leaves and other green organs of plants and in algae Chloroplast structure includes: – Thylakoids, membranous sacs – Stroma, the internal fluid

LE 6-18 Chloroplast DNA Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm

Peroxisomes: Oxidation Peroxisomes are specialized metabolic compartments bounded by a single membrane Peroxisomes produce hydrogen peroxide and convert it to water

LE 6-19 Chloroplast Peroxisome Mitochondrion 1 µm

Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending throughout the cytoplasm It organizes the cell’s structures and activities, anchoring many organelles It is composed of three types of molecular structures: – Microtubules – Microfilaments – Intermediate filaments

Roles of the Cytoskeleton: Support, Motility, and Regulation The cytoskeleton helps to support the cell and maintain its shape It interacts with motor proteins to produce motility Inside the cell, vesicles can travel along “monorails” provided by the cytoskeleton Recent evidence suggests that the cytoskeleton may help regulate biochemical activities

LE 6-21a Vesicle Receptor for motor protein Microtubule of cytoskeleton Motor protein (ATP powered) ATP

Microtubules Microtubules are hollow rods about 25 nm in diameter and about 200 nm to 25 microns long Functions of microtubules: – Shaping the cell – Guiding movement of organelles – Separating chromosomes during cell division

LE µm Microtubule Centrosome Centrioles Longitudinal section of one centriole Microtubules Cross section of the other centriole

Cilia and flagella share a common ultrastructure: – A core of microtubules sheathed by the plasma membrane – A basal body that anchors the cilium or flagellum – A motor protein called dynein, which drives the bending movements of a cilium or flagellum Animation: Cilia and Flagella Animation: Cilia and Flagella

How dynein “walking” moves flagella and cilia: – Dynein arms alternately grab, move, and release the outer microtubules – Protein cross-links limit sliding – Forces exerted by dynein arms cause doublets to curve, bending the cilium or flagellum

LE 6-25a Dynein “walking” Microtubule doublets ATP Dynein arm

Microfilaments that function in cellular motility contain the protein myosin in addition to actin In muscle cells, thousands of actin filaments are arranged parallel to one another Thicker filaments composed of myosin interdigitate with the thinner actin fibers Video: Cytoplasmic Streaming Video: Cytoplasmic Streaming

LE 6-27a Muscle cell Actin filament Myosin filament Myosin arm Myosin motors in muscle cell contraction

Localized contraction brought about by actin and myosin also drives amoeboid movement Pseudopodia (cellular extensions) extend and contract through the reversible assembly and contraction of actin subunits into microfilaments

LE 6-27b Cortex (outer cytoplasm): gel with actin network Amoeboid movement Inner cytoplasm: sol with actin subunits Extending pseudopodium

Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that are external to the plasma membrane These extracellular structures include: – Cell walls of plants – The extracellular matrix (ECM) of animal cells – Intercellular junctions

Cell Walls of Plants Plant cell walls may have multiple layers: – Primary cell wall: relatively thin and flexible – Middle lamella: thin layer between primary walls of adjacent cells – Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall Plasmodesmata are channels between adjacent plant cells

LE 6-28 Central vacuole of cell Plasma membrane Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole of cell Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata

Plants: Plasmodesmata Plasmodesmata are channels that perforate plant cell walls Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell

The Extracellular Matrix (ECM) of Animal Cells Animal cells lack cell walls but are covered by an elaborate extracellular matrix (ECM) The ECM is made up of glycoproteins and other macromolecules Functions of the ECM: – Support – Adhesion – Movement – Regulation

LE 6-29a EXTRACELLULAR FLUID Proteoglycan complex Collagen fiber Fibronectin Integrin Micro- filaments CYTOPLASM Plasma membrane

Intercellular Junctions Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact Intercellular junctions facilitate this contact

Animals: Tight Junctions, Desmosomes, and Gap Junctions At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid Desmosomes (anchoring junctions) fasten cells together into strong sheets Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Animation: Tight Junctions Animation: Tight Junctions Animation: Desmosomes Animation: Desmosomes Animation: Gap Junctions Animation: Gap Junctions

LE 6-31 Tight junctions prevent fluid from moving across a layer of cells Tight junction 0.5 µm 1 µm 0.1 µm Gap junction Extracellular matrix Space between cells Plasma membranes of adjacent cells Intermediate filaments Tight junction Desmosome Gap junctions