1 Joint Frequency Distributions for Future European Climate Change Glen Harris, Ben Booth, Kate Brown, Mat Collins, James Murphy, David Sexton, Mark Webb.

Slides:



Advertisements
Similar presentations
Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB United Kingdom Tel: +44 (0) Fax: +44 (0)
Advertisements

Prof. Dr. Olav Hohmeyer IPCC AR4 (2007) Results WG III Folie 1 A Short Overview of the IPCC Report on Climate Change Mitigation 2007 (WG III) Prof. Dr.
RT1 Development of the Ensemble Prediction System Aim Build and test an ensemble prediction system based on global Earth System models developed in Europe,
D. W. Shin, S. Cocke, Y.-K. Lim, T. E. LaRow, G. A. Baigorria, and J. J. OBrien Center for Ocean-Atmospheric Prediction Studies Florida State University,
© Crown copyright 2006Page 1 CFMIP II sensitivity experiments Mark Webb (Met Office Hadley Centre) Johannes Quaas (MPI) Tomoo Ogura (NIES) With thanks.
Page 1© Crown copyright 2007 Constraining the range of climate sensitivity through the diagnosis of cloud regimes Keith Williams 1 and George Tselioudis.
Challenges in the Extraction of Decision Relevant Information from Multi-Decadal Ensembles of Global Circulation Models Dave Stainforth Acknowledgements:
ENSEMBLES General Assembly, Prague, Czech Republic, November 2007 Potential WP Participants (known absentees underlined): DJF, DISAT, FMI, FUB, LUND,
The effect of indiscriminate nudging time in regional climate modeling of the Mediterranean basin Tamara Salameh, Philippe Drobinski, Thomas Dubos and.
The new German project KLIWEX-MED: Changes in weather and climate extremes in the Mediterranean basin Andreas Paxian, University of Würzburg MedCLIVAR.
Basics of numerical oceanic and coupled modelling Antonio Navarra Istituto Nazionale di Geofisica e Vulcanologia Italy Simon Mason Scripps Institution.
THOR Annual Meeting - Bergen 9-11 November /25 On the impact of initial conditions relative to external forcing on the skill of decadal predictions:
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Extended range forecasts at MeteoSwiss: User experience.
Page 1© Crown copyright 2004 Seasonal forecasting activities at the Met Office Long-range Forecasting Group, Hadley Centre Presenter: Richard Graham ECMWF.
Sub-seasonal to seasonal prediction David Anderson.
Eocene Climate Modelling, and the causes of the Palaeocene-Eocene Thermal Maximum (PETM) 1)Introduction to the PETM 2)Modelling the PETM 3)Modelling the.
1 -Classification: Internal Uncertainty in petroleum reservoirs.
6. Equilibrium fluctuations for time-varying forcing. Values of constant term larger than expected from RCE run correspond to fluctuations greater than.
Forcing and feedback in the climate-carbon system Jonathan Gregory 1,2, Mark Webb 2, Keith Williams 2, Marie Doutriaux-Boucher 2, Olivier Boucher 2, Piers.
Proposed new uses for the Ceilometer Network
Page 1 of 26 A PV control variable Ross Bannister* Mike Cullen *Data Assimilation Research Centre, Univ. Reading, UK Met Office, Exeter, UK.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
Expert Meeting on the Assessment of Contributions to Climate Change Takanobu KOSUGI, Toshimasa TOMODA, Keigo AKIMOTO Research Institute of Innovative Technology.
© UKCIP 2006 © Crown copyright Met Office Probabilistic climate projections from the decadal to centennial time scale WCRP Workshop on Regional Climate,
ISU Atmospheric Component Update – Part I Justin Glisan Iowa State University.
Page 1 NAE 4DVAR Oct 2006 © Crown copyright 2006 Mark Naylor Data Assimilation, NWP NAE 4D-Var – Testing and Issues EWGLAM/SRNWP meeting Zurich 9 th -12.
Dependencia de la humedad de saturación (q*) con la temperatura (T) Pendiente crece con la temperatura.
1 00/XXXX © Crown copyright Apportioning climate change indicators between regional emitters Jason Lowe and Geoff Jenkins Hadley Centre for Climate Prediction.
Running a model's adjoint to obtain derivatives, while more efficient and accurate than other methods, such as the finite difference method, is a computationally.
Simple Linear Regression Analysis
Multiple Regression and Model Building
Commonly Used Distributions
ECMWF long range forecast systems
Task: (ECSK06) Regional downscaling Regional modelling with HadGEM3-RA driven by HadGEM2-AO projections National Institute of Meteorological Research (NIMR)/KMA.
Climate modeling Current state of climate knowledge – What does the historical data (temperature, CO 2, etc) tell us – What are trends in the current observational.
Climate case study. Outline The challenge The simulator The data Definitions and conventions Elicitation Expert beliefs about climate parameters Expert.
Earth Systems Science Chapter 6 I. Modeling the Atmosphere-Ocean System 1.Statistical vs physical models; analytical vs numerical models; equilibrium vs.
Page 1© Crown copyright 2004 Development of probabilistic climate predictions for UKCIP08 David Sexton, James Murphy, Mat Collins, Geoff Jenkins, Glen.
Page 1GMES - ENSEMBLES 2008 ENSEMBLES. Page 2GMES - ENSEMBLES 2008 The ENSEMBLES Project  Began 4 years ago, will end in December 2009  Supported by.
Ensemble-variational sea ice data assimilation Anna Shlyaeva, Mark Buehner, Alain Caya, Data Assimilation and Satellite Meteorology Research Jean-Francois.
OUCE Oxford University Centre for the Environment “Applying probabilistic climate change information to strategic resource assessment and planning” Funded.
ESA DA Projects Progress Meeting 2University of Reading Advanced Data Assimilation Methods WP2.1 Perform (ensemble) experiments to quantify model errors.
© Crown copyright Met Office Climate Projections for West Africa Andrew Hartley, Met Office: PARCC national workshop on climate information and species.
Applications of Bayesian sensitivity and uncertainty analysis to the statistical analysis of computer simulators for carbon dynamics Marc Kennedy Clive.
© Crown copyright Met Office Using a perturbed physics ensemble to make probabilistic climate projections for the UK Isaac Newton workshop, Exeter David.
From Climate Data to Adaptation Large-ensemble GCM Information and an Operational Policy-Support Model Mark New Ana Lopez, Fai Fung, Milena Cuellar Funded.
EGU General Assembly C. Cassardo 1, M. Galli 1, N. Vela 1 and S. K. Park 2,3 1 Department of General Physics, University of Torino, Italy 2 Department.
Regional climate prediction comparisons via statistical upscaling and downscaling Peter Guttorp University of Washington Norwegian Computing Center
Changes in Floods and Droughts in an Elevated CO 2 Climate Anthony M. DeAngelis Dr. Anthony J. Broccoli.
© Crown copyright Met Office Providing High-Resolution Regional Climates for Vulnerability Assessment and Adaptation Planning Joseph Intsiful, African.
Recent Advances in Climate Extremes Science AVOID 2 FCO-Roshydromet workshop, Moscow, 19 th March 2015 Simon Brown, Met Office Hadley Centre.
R.Sutton RT4 coordinated experiments Rowan Sutton Centre for Global Atmospheric Modelling Department of Meteorology University of Reading.
Research Needs for Decadal to Centennial Climate Prediction: From observations to modelling Julia Slingo, Met Office, Exeter, UK & V. Ramaswamy. GFDL,
Core Theme 5: Technological Advancements for Improved near- realtime data transmission and Coupled Ocean-Atmosphere Data Assimilation WP 5.2 Development.
Page 1© Crown copyright 2004 WP5.3 Assessment of Forecast Quality ENSEMBLES RT4/RT5 Kick Off Meeting, Paris, Feb 2005 Richard Graham.
© Crown copyright Met Office Uncertainties in Climate Scenarios Goal of this session: understanding the cascade of uncertainties provide detail on the.
© Crown copyright Met Office Downscaling ability of the HadRM3P model over North America Wilfran Moufouma-Okia and Richard Jones.
Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011.
© Crown copyright Met Office Uncertainties in the Development of Climate Scenarios Climate Data Analysis for Crop Modelling workshop Kasetsart University,
Reducing the risk of volcanic ash to aviation Natalie Harvey, Helen Dacre (Reading) Helen Webster, David Thomson, Mike Cooke (Met Office) Nathan Huntley.
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming 大氣所碩一 闕珮羽 Tamsin L. Edwards.
Global Warming The heat is on!. What do you know about global warming? Did you know: Did you know: –the earth on average has warmed up? –some places have.
Shortwave and longwave contributions to global warming under increased CO 2 Aaron Donohoe, University of Washington CLIVAR CONCEPT HEAT Meeting Exeter,
1/39 Seasonal Prediction of Asian Monsoon: Predictability Issues and Limitations Arun Kumar Climate Prediction Center
The absorption of solar radiation in the climate system
How will the earth’s temperature change?
Presentation transcript:

1 Joint Frequency Distributions for Future European Climate Change Glen Harris, Ben Booth, Kate Brown, Mat Collins, James Murphy, David Sexton, Mark Webb Quantifying Uncertainty in Model Predictions (QUMP) Research Theme, Hadley Centre for Climate Prediction and Research, Met Office, Exeter, UK. Jonty Rougier, Durham University. Ensembles Work Package 6.2 Meeting, Helsinki, April 2007

2 Gulf of Finland joint frequency distribution Joint frequency distributions for annual temperature and annual precipitation anomalies, with respect to baseline climate. A1B forcing, mean anomaly. 129 time-scaled versions of HadSM3 equilibrium response (blue points). Sample distribution of scaling error, including internal variability (black points). Medians: T=5.1K, P=12%

3 HadCM3 European Land Grid-points FinnmarkWestern_TverHungary North_CapeMoscow_NorthNorth_West_Romania VarangerfjordDenmarkNorth_East_Romania WestfjordWest_LithuaniaMoldova Swedish_LaplandEast_LithuaniaLower_Dniepr North_BothniaVitebskDonetsk Finnish_LaplandSmolenskSouth_West_France Russian_LaplandMoscow_SouthSouth_East_France MurmanskHollandFrench_Italian_Alps Kola_PeninsulaNorth_GermanyPo_Dolomites Central_NorrlandBerlinSlovenia_Croatia West_BothniaNorth_PolandBosnia East_BothniaWarsawSouth_West_Romania North_West_KareliaPripetSouth_East_Romania North_East_KareliaSouth_East_BelarusPyrenees White_SeaBrianskTuscany SognefjordKurskAlbania_Montenegro TrondheimIrelandCentral_Balkans South_Norrland ChannelEastern_Bulgaria Western_FinlandBelgium_NE_FranceGalicia Eastern_FinlandRhineNorthern_Spain North_LadogaSouth_East_GermanyEastern_Spain OnegaCzech_RepublicGreece South_West_Archangel Slovakia_South_PolandWest_Marmara TelemarkSouth_East_PolandBosphorus OsloWestern_UkraineAnkara SvealandKievBlack_Sea_Turkey Gulf_of_FinlandSumiNorthern_Portugal Saint_PetersburgKharkovCentral_Spain East_LadogaWestern_FranceSouth_West_Turkey West_VologdaBurgundyTaurus_Mountains GotalandSwitzerlandTurkish_Euphrates LatviaAustrian_AlpsSouthern_Portugal PskovEastern_AustriaAndalucia Exclude 4 UK points (avoid potential conflicts with UKCIP08 project). Eastward to Moscow only. Rather coarse resolution ( deg). 102 points in this set.

4 Where are the uncertainties? Natural unforced variabilityUnknown future forcing Modelling of Earth system processes QUMP: focus on modelling uncertainties

5 QUMP approach Predictions are uncertain so… 1.Run an ensemble of simulations with a climate model in which perturbations are made to the uncertain inputs and processes. 2.Compare each model simulation with observations and assign a relative score to each. 3.Produce a weighted distribution of the forecast variable of interest. i.e.: Posterior = Prior Likelihood QUMP project pragmatically uses a Bayesian framework.

6 Parameter Perturbations – 31 quantities perturbed Large Scale Cloud Ice fall speed. Critical relative humidity for formation. Cloud droplet to rain: conversion rate and threshold. Cloud fraction calculation. Convection Entrainment rate. Intensity of mass flux. Shape of cloud (anvils). Cloud water seen by radiation. Radiation Ice particle size/shape. Cloud overlap assumptions. Water vapour continuum absorption. Sea Ice Albedo dependence on temperature. Ocean-ice heat transfer. Boundary layer Turbulent mixing coefficients: stability- dependence, neutral mixing length. Roughness length over sea: Charnock constant, free convective value. Dynamics Diffusion: order and e-folding time. Gravity wave drag: surface and trapped lee wave constants. Gravity wave drag start level. Land Surface Processes Root depths. Forest roughness lengths. Surface-canopy coupling. CO 2 dependence of stomatal conductance.

7 Some issues for ensemble climate prediction Limited computational resources. use HadSM3/HadCM3 models, not expensive flagship HadGEM model mainly use mixed-layer (slab) ocean models. predict pdfs for equilibrium climate response. Large number of uncertain climate model parameters. to obtain robust predictions independent of sampling, emulators are required to predict response for parts of parameter space unsampled by GCM simulation. Sample prior distributions of uncertain model parameters. use expert ranges, prior distribution shape (triangular, uniform,…) test sensitivity to sampling assumptions. Likelihood weighting. want to choose as many observational constraints as possible to down-weight unrealistic model variants. Scale equilibrium response, to create pseudo-transient ensemble validate scaling with GCM ensemble Physics perturbations upset radiative balance, potential for climate drift. flux-correct transient GCM simulations.

8 Perturbed-Physics Atmosphere-Slab Equilibrium Ensemble Simulations Additional simulations underway to explore interesting regions of parameter space (currently ~300 members). Distribution differences due to different sampling strategies and parameter choices. Murphy et al, Stainforth et al, Webb et al, Typical slab member

9 Simple example for climate sensitivity Murphy et al., 2004, Nature, 430, histogram of perturbed physics ensemble emulated prior predictive distribution likelihood weighting via comparison with real world posterior predictive distribution

10 Probabilistic Predictions - Framework 1.Perform a limited ensemble of GCM experiments with perturbed input parameters. 2.Build an emulator which can estimate the GCM output at untried parameter values. 3.Sample emulator to produce model prior predictive distributions of climate variables. 4.Use observations to produce a likelihood function and posterior (observationally-constrained) predictive distributions. 5.Sample weighted posterior distribution and time-scale with Simple Climate Model (SCM) to predict pdfs for transient regional future climate change, at GCM resolution. 6.Run ensemble of 25km Regional Climate Model (HadRM3) variants driven by equivalent GCM transient runs, and downscale responses to predict regional pdfs.

11 Emulation for any perturbed-parameter value. Rougier, Sexton et al, J.Clim (submitted) Multiple linear regression; entertain many possible functional relationships for explanatory variables. Emulator error used to select interesting parameter combinations to create additional members, and improve emulator. Emulator uncertainty is propagated through to the final PDFs. Emulator: statistical model designed to predict the outputs of a climate model which one could in principle run. Emulators predict not only the mean response, but also the error in the predicted response. Built from a sample of runs. Joint prior equilibrium pdf for Eng-Wales summer temperature and precipitation response, for CO 2 doubling.

12 Compare models with observations (likelihood weighting) Each ensemble member gets a weight w, something like: observed variablesimulated variable variance of discrepancy variance of emulator error variance of observations (including natural variability, obs. error etc.) Sum over all observables Sexton et al, J.Clim (in prep) More precisely, model skill is likelihood of model data given some observations:

13 Discrepancy Following Murphy et al (Nature, 2004), began collaboration with statisticians (Rougier and Goldstein, Durham Univ.) to improve robustness of predictions. Introduce discrepancy: Measure of uncertainty associated with model imperfection: distance between unknown true future climate and best possible choice of the uncertain model input parameters. Unknown, but we assume this distance similar to that between other climate models and our best perturbed-physics emulation of the future predictions from these same models. Discrepancy therefore also a quantification of structural modelling error.

14 Compare model prior pdf with observationally-constrained pdf Equilibrium warming for England- Wales for a doubling of CO 2. Observational-constraints: narrow the spread in pdf, and can also move it (e.g., less than 2 C warming unlikely). Discrepancy: flattens likelihood, and broadens spread in observationally- constrained posterior. Need discrepancy to avoid over- confidence, spiky posterior distributions. model prior pdf observationally- constrained posterior pdf (no discrepancy) posterior pdf, with discrepancy D.Sexton, J.Rougier

15 Transient Ensembles Need coupled model experiments to capture time- dependent climate change. Run 17 of the perturbed atmosphere HadSM3 versions coupled instead to dynamic ocean, i.e. HadCM3 setup. Transient ensembles smaller because of spin-up, additional ocean model, and longer runtime required. Flux adjustments used to prevent model drift, and reduce SST biases. HadCRUT observed series. Observations Historical + A1B forcing

16 Compare perturbed physics ensemble with multi-model ensemble Increase CO 2 by 1% per annum. Spread in transient response comparable in the two ensembles. Collins et al., Clim. Dyn.

17 Scaling the equilibrium response Problem: Can only afford relatively few simulations in transient GCM ensemble (17 here). Aim: Want to predict the transient response for the 129 slab-ocean experiments (or indeed any emulated equilibrium response), if they were coupled instead to a dynamic ocean (HadCM3). Solution: Scale anomaly patterns for each slab member by global mean surface temperature anomaly ΔT(t) predicted by a Simple Climate Model (SCM) Proposed in 1990 by Santer, Wigley, Schlesinger & Mitchell as way of predicting transient regional response from slab equilibria, before fully-coupled AOGCMs had been developed. F in principle any climate surface variable, e.g. mean temperature, seasonal precipitation, soil moisture, percentiles of daily T max

18 Time-Scaling to Produce Pseudo-Transient Ensembles 129 SCM projections for global surface temperature anomaly, using diagnosed equilibrium feedbacks (1% p.a. CO 2 inc). Typical response pattern for annual surface temperature to a doubling in CO 2 concentration. Frequency distributions for Northern Europe annual temperature (including scaling error).

19 Scaling Assumptions year mean for equilibrium response sufficient to give good signal (compared to internal variability). 2. Slab equilibrium response patterns represent transient patterns. 3. Climate anomalies linear in global temperature anomaly ΔT(t). 4. ΔT(t) can be predicted by a Simple Climate Model (SCM), driven by emulated equilibrium climate feedbacks λ. 5. Assume equilibrium climate feedbacks represent transient feedbacks. Justification and Validation Compare pattern-scaling with the 17 fully-coupled simulations to give scaling error, and include this in predicted transient distributions. Any partial failure in assumptions quantified by validation: errors in scaling bigger uncertainty.

20 Scaling – validation with 17 member GCM ensemble GCM anomaly SCM scaled prediction SCM-GCM error Global (ghg only) Mediterranean Basin (all forcing).

21 Frequency distribution for Transient Climate Response (TCR) Parameter uncertainty more important than scaling uncertainty. Distribution shape here mainly reflects sample design, not model prior distribution. Assume distribution of error in scaled response to be Gaussian (no evidence to contrary). Estimate variance and bias from validation with 17 member GCM ensemble. For each region and time, sum 129 t distributions (red curve) to obtain frequency distribution (blue curve). (TCR: surface temperature response for years during 1% per annum CO 2 increase).

22 Time-scaling equilibrium patterns of change Example: djf precipitation, 1% CO 2 pa increase Transient regional frequency distributions, using 129 perturbed atmosphere models. Plumes of evolving uncertainty (median, 80, 90, 95% confidence ranges) Harris et al., 2006, Clim.Dyn. 27, p357.

23 Pattern scaling A1B scenario SCM uses forcing diagnosed from GCM runs. compare here internal variability for one GCM run (green), with parameter and scaling uncertainty (red). Improvement of scaling to reduce error Using the A1B and A1B-GHG GCM ensembles, we can calculate - additional patterns for the normalised aerosol response s aero - correction patterns to represent differences between the slab and dynamic ocean response c gcm

24 Production of interim data - summary 1. Scale 129 equilibrium responses, to predict transient joint temperature-precipitation response if we were to run with dynamic ocean and A1B forcing. 2. For each equilibrium member, sample (40 times for this test) the scaling error distribution (red curve), with variance and bias obtained from validation. Still a lot more to do…

25 Gulf of Finland future annual temperature/precipitation anomalies with respect to baseline. 80%, 90% and 95% confidence ranges. 17 GCM anomalies

26 European pdfs – still to do Will do - Instead of annual data, process seasonal means and produce frequency distributions, based once again on 129 member ensemble. - Data now all back so can be done. Possible (time/resource constraints) - Build emulators for selected European GCM grid-points, and at same time obtain weights to observationally-constrain model variants. - Then resample weighted equilibrium distributions and time-scale to produce observationally constrained pdfs for future European climate change (HadCM3 resolution). Unlikely at moment - Redo UKCIP08 but for other parts of European domain, down-scaling to 25km resolution.

27 Down-scaling to the UK (and Europe?): UKCIP08 Also running a 17-member 25km resolution HadRM3 (regional model) ensemble. Driven by boundary forcing from the HadCM3 A1B ensemble ( ). Runs will finish in July. We will construct regression relationships between the 17 GCM and 17 RCM simulations of future climate. Then sample predicted GCM transient pdfs and use these regression models to deliver regional response pdfs at 25km scales (this will introduce further uncertainty). R.Clark, D.Sexton, K.Brown, G.Harris, many others…

28 Additional perturbed physics ensembles (PPE) Murphy et al (to appear in Phil. Trans. special issue, 2007) 4 additional transient ensembles RCM ensemble Atmosphere PPE. Also done two other forcing scenarios: A1B-GHG, and B1. Will also do A1FI.

29 Acknowledgments QUMP Team: David Sexton, Mat Collins, Ben Booth, James Murphy, Mark Webb, Kate Brown Also: Robin Clark, Penny Boorman, Gareth Jones, B. Bhaskaran, Jonty Rougier And: Hadley Centre, Met Office, DEFRA (Department for the Environment, Food and Rural Affairs) UK Govt, ENSEMBLES, ClimatePrediction.net. Thank You.