Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia,

Slides:



Advertisements
Similar presentations
Non-classical light and photon statistics
Advertisements

Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler.
Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November.
Experiments thought to prove non – locality may be artifacts Karl Otto Greulich. Fritz Lipmann Institute Beutenbergstr. 11 D Jena Entanglement, the.
1 quantum teleportation David Riethmiller 28 May 2007.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Blaylock - Clark University 2/17/10 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Clark.
Texas A&MTexas A&M Physics&AstronomyPhysics&Astronomy Seven Pines Symposium XVII 2013 Bell Inequality Experiments Edward S. Fry Physics & Astronomy Department.
Bell inequality & entanglement
GHZ correlations are just a bit nonlocal Carlton M. Caves University of New Mexico caves Seminar date Please join the APS Topical.
Bell’s inequalities and their uses Mark Williamson The Quantum Theory of Information and Computation
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Chapter 22 The EPR paper and Bell's theorem by Steve Kurtz.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Quantum Information Technology Group in NUS Singapore Theoretical Section Experimental Section.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Quantum violation of macroscopic realism and the transition to classical physics Faculty of Physics University of Vienna, Austria Institute for Quantum.
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
In 1887,when Photoelectric Effect was first introduced by Heinrich Hertz, the experiment was not able to be explained using classical principles.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
University of Gdańsk, Poland
Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
QUANTUM TELEPORTATION
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
Necessary adaptation of the CH/Eberhard inequality bound for a loophole-free Bell test Quantum Theory: from Problems to Advances – QTPA Linnaeus University,
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
Blaylock - Williams College 4/17/15 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Williams.
Blake Morell Daniel Bowser Trenton Wood. Contents Background Experimental Design & Outcome Implications Future Applications.
1 Experimenter‘s Freedom in Bell‘s Theorem and Quantum Cryptography Johannes Kofler, Tomasz Paterek, and Časlav Brukner Non-local Seminar Vienna–Bratislava.
1 quantum mysteries again! quantum mysteries again! classical vs. quantum correlations ‘ quantum mechanics is weird” N. Bohr Bell’s inequality? QM VIOLATES.
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
Quantum mechanical phenomena. The study between quanta and elementary particles. Quanta – an indivisible entity of a quantity that has the same value.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Violation of local realism with freedom of choice Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics and Quantum Information.
Quantum randomness and the device-independent claim Valerio Scarani Acknowledgment: Singapore MoE Academic Research Fund Tier 3 MOE2012- T “Random.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
The EPR Paradox, Bell’s inequalities, and its significance By: Miles H. Taylor.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Bell’s Inequality.
Entanglement-based Free Space Quantum Cryptography in Daylight Antía Lamas-Linares, Matthew P. Peloso, Ilja Gerhardt, Caleb Ho and Christian Kurtsiefer.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Macrorealism, the freedom-of-choice loophole, and an EPR-type BEC experiment Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics.
William Plick, PhD IQOQI Vienna APS March Meeting, March 6th, 2014.
Spooky action at distance also for neutral kaons? by Beatrix C. Hiesmayr University of Vienna Projects: FWF-P21947 FWF-P23627 FWF-P26783 Fundamental Problems.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Secret keys and random numbers from quantum non locality Serge Massar.
Non-locality and quantum games Dmitry Kravchenko University of Latvia Theory days at Jõulumäe, 2008.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Using Neutrino Oscillations to Test the Foundations of Quantum Mechanics David Kaiser.
Quantum nonlocality based on finite-speed causal influences
Entangled Electrons.
No Fine theorem for macroscopic realism
Loophole-free test of Bell’s theorem with entangled photons
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum mechanics from classical statistics
Bell’s inequality. The quantum world is stranger than we can imagine
Johannes Kofler Max Planck Institute of Quantum Optics (MPQ)
Max Planck Institute of Quantum Optics (MPQ)
EPR Paradox and Bell’s theorem
Presentation transcript:

Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia, Vancouver, Canada 3 July 2013 Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany

Overview Assumptions in Bell’s theorem  Realism  Locality  Freedom of choice Closing loopholes  Locality  Freedom of choice  Fair sampling Conclusion and outlook

Quantum mechanics and hidden variables Bohr and Einstein, Kopenhagen interpretation (Bohr, Heisenberg) 1932von Neumann’s (wrong) proof of non-possibility of hidden variables 1935Einstein-Podolsky-Rosen paradox 1952De Broglie-Bohm (nonlocal) hidden variable theory 1964Bell‘s theorem on local hidden variables 1972First successful Bell test (Freedman & Clauser) History

Local realism Realism:physical properties are (probabilistically) defined prior to and independent of measurement Locality:no physical influence can propagate faster than the speed of light External world Passive observers Classical world view:

Realism: Hidden variables determine global prob. distrib.: p(A a 1 b 1, A a 1 b 2, A a 2 b 1,…|λ) Locality: (OI)Outcome independence:p(A|a,b,B,λ) = p(A|a,b,λ)& vice versa for B (SI)Setting independence:p(A|a,b,λ) = p(A|a,λ) & vice versa for B Freedom of choice:p(a,b|λ) = p(a,b)  p(λ|a,b) = p(λ) λ Bell’s Assumptions Bell’s assumptions 1 J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978) 3 J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, p. 243 (2004) J. S. Bell, Physics 1, 195 (1964)

Realism + Locality + Freedom of choice  Bell‘s inequality CHSH form 1 : S exp := E(a 1,b 2 ) + E(a 2,b 1 ) + E(a 2,b 1 ) – E(a 2,b 2 )  2 Original Bell paper 2 implicitly assumed freedom of choice: A(a,b,B,λ)A(a,b,B,λ) locality (outcome and setting independence)  (λ|a,b) A(a,λ) B(b,λ) –  (λ|a,c) A(a,λ) B(c,λ) freedom of choice explicitly: implicitly: Bell’s Assumptions Bell’s theorem 1 J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, PRL 23, 880 (1969) 2 J. S. Bell, Physics 1, 195 (1964)

Loopholes Why important? - quantum foundations - security of entanglement-based quantum cryptography Three main loopholes: Locality loophole hidden communication between the parties closed for photons (1982 1, ) Freedom-of-choice loophole settings are correlated with hidden variables closed for photons ( ) Fair-sampling loophole measured subensemble is not representative closed for atoms ( ), superconducting qubits ( ) and for photons ( ) 1 A. Aspect et al., PRL 49, 1804 (1982) 2 G. Weihs et al., PRL 81, 5039 (1998) 3 T. Scheidl et al., PNAS 107, (2010) 4 M. A. Rowe et al., Nature 409, 791 (2001) 5 M. Ansmann et al., Nature 461, 504 (2009) 6 M. Giustina et al., Nature 497, 227 (2013) Loopholes: maintain local realism despite S exp > 2 E

Locality:A is space-like sep. from b and B B is space-like sep. from a and A T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, (2010) Locality & freedom of choice b,Bb,B E,AE,A a Tenerife La Palma Freedom of choice:a and b are random a and b are space-like sep. from E E p(a,b| ) = p(a,b) p(A,B|a,b, ) = p(A|a, ) p(B|b, ) La PalmaTenerife

Polarizer settings a, b0°, 22.5°0, 67.5°45°, 22.5°45°, 67.5° Correlation E(a,b)0.62 ± ± ± 0.01–0.57 ± 0.01 Obtained Bell value S exp 2.37 ± 0.02 Coincidence rate detected: 8 Hz Measurement time: 2400 s Number of total detected coinc.:  Results T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, (2010)

Fair-sampling loophole Unfair sampling:detection efficiency could be low and setting-dependent 1  A =  A ( , ),  B =  B ( , ) Simple local realistic model 2 : 1 P. M. Pearle, PRD 2, 1418 (1970) 2 N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999) 3 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, (2011) Efficiency is not optional in security-related tasks (device-independent quantum cryptography): faked Bell violations 3 Reproduces the quantum predictions and has correct ratio of singles, coincidences and no clicks at all

Eberhard inequality CHSH inequality requires  tot > 82.8 % 1 (max. entangled states) Eberhard 2 (CH 3 ) inequality requires  tot > 66.7 %(non-max. ent. states)  no fair-sampling assumption  no requirement to measure  tot  no post-selection or normalization  only one detector per side 1 A. Garg and N. D. Mermin, PRD 35, 3831 (1987) 2 P. H. Eberhard, PRA 47, 747 (1993) 3 J. F. Clauser and M. A. Horne, PRD 10, 526 (1974) Source local realism

Transition-edge sensors 1 Picture from: Topics in Applied Physics 99, (2005) 2 A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032 (2008) Working principle: Superconductor (  200 nm thick tungsten film at  100 mK) at transition edge Steep dependence of resistivity on temperature Measurable temperature change by single absorbed photon Superconducting transition-edge sensors 1 Characteristics: High efficiency > 95 % 1 Low noise < 10 cps 1 Photon-number resolving

Setup Sagnac-type entangled pair source Non-max. entangled states Fiber-coupling efficiency >90% Filters: background- photon elimination >99% M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

Results M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013) Photon: only system for which all main loopholes are now closed (not yet simultaneously) C oo (α 1,β 1 )C oo (α 1,β 2 )C oo (α 2,β 1 )C oo (α 2,β 2 )SoA(α1)SoA(α1)SoB(β1)SoB(β1)J – Violation of Eberhard’s inequality 300 seconds per setting combination Detection efficiency  tot  75% No background correction etc.

The fair-sampling team Anton Zeilinger Marissa GiustinaAlexandra MechBernhard Wittmann Jörn BeyerAdriana LitaBrice CalkinsThomas Gerrits Sae Woo NamRupert Ursin Sven Ramelow

Conclusion and outlook Loopholes important for quantum foundations & quantum cryptography Locality and freedom-of-choice loophole closed for photons Fair-sampling loophole (already closed for atoms and superconducting qubits) now closed for photons Photons: first system for which each of the three major loopholes has been closed, albeit in separate experiments For a loophole-free experiment: fast random number generators, precise timing, efficiency gains to compensate propagation losses due to increased distance Endgame for local realism has begun

Appendix: Bell vs. Leggett-Garg J. K. and Č. Brukner, PRA 87, (2013)