MIT 2.71/2.710 Optics 11/08/04 wk10-a- 1 Today Imaging with coherent light Coherent image formation –space domain description: impulse response –spatial.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2003 Chapter 3 Data Transmission.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
MIT 2.71/2.710 Optics 11/10/04 wk10-b-1 Today Review of spatial filtering with coherent coherent illumination Derivation of the lens law using wave optics.
Today • Diffraction from periodic transparencies: gratings
MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 The spatial frequency domain.
The imaging problem object imaging optics (lenses, etc.) image
MIT 2.71/2.710 Optics 11/15/04 wk11-a-1 Resolution (contd)
Today’s summary • A new look at propagation and phase delays
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
1. 2 Unknown Backprojection usually produce a blurred version of the image.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
The Fourier Transform I
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
Lecture 28, Wednesday April 15 Diffraction Grating Thin Film Interference Single Slit Diffraction.
PSSA Preparation.
Young’s Experiment ․Young’s Double-Slit interference Exp.
Essential Cell Biology
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 25: Interference and Diffraction.
Immunobiology: The Immune System in Health & Disease Sixth Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Computer Vision Lecture 7: The Fourier Transform
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Math Review with Matlab:
Overview from last week Optical systems act as linear shift-invariant (LSI) filters (we have not yet seen why) Analysis tool for LSI filters: Fourier transform.
Fresnel diffraction formulae
Presentation transcript:

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 1 Today Imaging with coherent light Coherent image formation –space domain description: impulse response –spatial frequency domain description: coherent transfer function

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 2 The 4F system Fourier transform relationship Fourier transform relationship

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 3 The 4F system Theorem:

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 4 The 4F system object plane Fourier plane Image plane

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 5 The 4F system object plane Fourier plane Image plane

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 6 The 4F system with FP aperture object planeFourier plane : aperture-limited Image plane: blurred i. e. low-pass filtered

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 7 Impulse response & transfer function A point source at the input plane results not in a point image but in a diffraction pattern h(x,y ) Point source at the origin delta function δ (x,y) h(x,y ) is the inpulse response of the system More commonly, h(x,y ) is called the Coherent Point Spread Function (Coherent PSF)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 8 Coherent imaging as a linear, shift-invariant system transfer function H(u,v): akapupil function Thin transparency output amplitude impulse response convolution Fourier transform illumi nation (plane wave spectrum transfer function multiplication

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 9 Transfer function & impulse response of rectangular aperture Transfer function: circular aperture Impulse response: Airy function

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 10 Coherent imaging as a linear, shift-invariant system Example: 4F system with circular Fourier plane Thin transparency illumi nation Impulse response output amplitude Fourier transform Fourier transform transfer function multiplication convolution (plane wave spectrum

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 11 Transfer function & impulse response of rectangular aperture

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 12 Coherent imaging as a linear, shift-invariant system Example: 4F system with circular Fourier plane Thin transparency illumi nation Impulse response output amplitude Fourier transform Fourier transform transfer function multiplication convolution (plane wave spectrum

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 13 Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture unlimited Image plane: grating is imaged with lateral de-magnification (all orders pass)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 14 Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture limited Image plane: grating is not imaged only 0 th order (DC component) surviving (some orders cut off)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 15 Spatial frequency clipping field after input transparency field before filter field after filter field at output (image plane)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 16 Effect of spatial filtering Fourier plane filter with circ-aperture Original object (sinusoidal spatial variation, i.e. grating) Frequency-filtered image (spatial variation blurred out, only average survives)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 17 Spatial frequency clipping f1=20cm λ =0.5 μ m monochromatic coherent on-axis illumination object plane Transparency intensity at input plane Intensity before Fourier Filter (negative contrast) Fourier plane cire-aperture Fourier filter transitivity

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 18 Space-Fourier coordinate transformations :pixel size :frequency resolution spare domain Spatial Frequency domain Nyquist relationships.

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 19 4F coordinate transformations :pixel size Nyquist relationships. spare domain Fourier plane

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 20 Spatial frequency clipping f 1 =20cm λ =0.5 μ m monochromatic coherent on-axis illumination object plane transparency intensity at input plane Intensity before Fourier Filter (negative contrast) Fourier plane cire-aperture Fourier filter transitivity Image plane observed field

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 21 Formation of the impulse response object plane: pinhole generates spherical wave Fourier plane: circ-aperture limited Image plane: Fourier transform of aperture, Airy pattern (plane wave is clipped)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 22 field after input transparency field before filter field after filter field at output (image plane) Low–pass filtering (Airy pattern)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 23 Effect of spatial filtering Fourier plane filter with circ-aperture Original object (small pinhole impulse, generating spherical wave past the transparency) Impulse reponse (aka point point-spread function, original point has blurred to an Airy pattern, or jinc)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 24 Low–pass filtering the impulse f 1 =20cm λ =0.5 μ m monochromatic coherent on-axis illumination object plane transparency intensity at input plane Intensity before Fourier Filter (negative contrast) Fourier plane cire-aperture Fourier filter transitivity

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 25 Spatial frequency clipping monochromatic coherent on-axis illumination object plane transparency intensity at input plane Intensity after Fourier filter Fourier plane cire-aperture Intensity at output plane Image plane observed field note: pseudo-accentuated sidelobes

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 26 Low-pass filtering with the 4F system monochromatic coherent on-axis illumination object plane transparency Fourier plane cire-aperture Image plane observed field field arriving At Fourier plane field arriving from Fourier plane Fourier transform

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 27 monochromatic coherent on-axis illumination object plane transparency Fourier plane cire-aperture Image plane observed field Spatial filtering with the 4F system field arriving At Fourier plane field arriving from Fourier plane Fourier transform Fourier transform

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 28 Examples: the amplitude MIT pattern Original MIT pattern

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 29 Weak low–pass filtering Pinhole, radius 2.5mmFiltered with pinhole, radius 2.5mm Fourier image plane f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 30 Moderate low–pass filtering (aka blurringblurring) Fourier image plane Pinhole, radius 1mmFiltered with pinhole, radius 1mm f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 31 Strong low–pass filtering Pinhole, radius 0.5mmFiltered with pinhole, radius 0.5mm Fourier image plane f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 32 Moderate high–pass filtering Reflective disk, radius 0.5mm Filtered with reflective disk, radius 0.5mm Fourier image plane f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 33 Strong high–pass filtering Reflective disk, radius 2.5mmFiltered with reflective disk, radius 2.5mm Fourier image plane f 1 =20cm λ =0.5 μ m (aka edge enhancement)

MIT 2.71/2.710 Optics 11/08/04 wk10-a dimensional blurring Horizontal slit, width 2mm Filtered with horizontal slit, width 2mm Fourier image plane f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a dimensional blurring vertical slit, width 2mm Filtered with vertical slit, width 2mm Fourier image plane f 1 =20cm λ =0.5 μ m

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 36 Phase objects glass plate (transparent) thickness protruding part phase-shifts coherent illumination by amount φ =2 π (n-1)t/ λ Often useful in imaging biological objects (cells, etc.)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 37 Viewing phase objects Intensity (object is invisible) Amplitude (need interferometer) Original phase MIT pattern (intensity) Original 0.1 rad phase MIT pattern (phase)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 38 Zernicke phase-shift mask phase-shift mask (magnitude), radii 5mm & 1mm phase-shift mask (phase), radii 5mm & 1mm (phase)

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 39 Imaging with Zernicke mask Fourier image plane f 1 =20cm λ =0.5 μ m phase-shift mask (phase), radii 5mm & 1mm (phase) phase-shift mask, radii 5mm & 1mm Filtered with,

MIT 2.71/2.710 Optics 11/08/04 wk10-a- 40 Imaging with Zernicke mask Fourier image plane f 1 =20cm λ =0.5 μ m phase-shift mask (phase), radii 5mm & 0.1mm (phase) phase-shift mask, radii 5mm & 0.1mm Filtered with,