CHAPTER 6 ELECTRONIC STRUCTURE OF THE ATOM. COULOMB’S LAW (POTENTIAL ENERGY FORM)

Slides:



Advertisements
Similar presentations
Chapter 4 STRUCTURE OF THE ATOM.
Advertisements

Alright class we are going back to quantum numbers.
Wavelength Visible light wavelength Ultraviolet radiation Amplitude Node Chapter 6: Electromagnetic Radiation.
Wavelength Visible light wavelength Ultraviolet radiation Amplitude Node Chapter 6: Electromagnetic Radiation.
Do Now: Take out your vocab 1. What is light?
wavelength Visible light wavelength Ultraviolet radiation Amplitude Node Chapter 6: Electromagnetic Radiation.
Electron Configuration Notation with Atomic Structure Review
Atomic Structure and Periodicity. Atoms ProtonsNeutronsElectrons 1. Where are the electrons 2. Do they have different energies.
Chapter 4 Review Test is Thursday, December 22nd.
Electron Configuration Chemistry I Mr. Pena. Bohr’s Atom Model -Confines electrons in shells -Electrons loses energy due to movement. -Electrons can be.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemistry Chapter 4 Arrangement of Electrons in Atoms
The Wave Nature of Light. Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 The Development of a New Atomic Model Properties of Light.
Quantum Chemistry Chapter 6. Copyright © Houghton Mifflin Company. All rights reserved.6 | 2 Electromagnetic Radiation.
Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.
CHAPTER 4 Electrons in Atoms.
Arrangement of Electrons in Atoms Chapter 4. Properties of Light Electromagnetic Radiation- which is a form of energy that exhibits wavelength behavior.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electromagnetic Radiation Radiant energy that exhibits wavelength-like behavior and.
1 Periodicity & Atomic Structure Chapter 5. 2 The Periodic Table01 The periodic table is the most important organizing principle in chemistry. Chemical.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Agenda Midterm – October 26 th / 27th Chapter 5 Quiz – October 21 Formal Lab – October 21 st Homework (wb 5) – October 24/25th 
Chapter 6 Electronic Structure of Atoms. The Wave Nature of Light The light that we can see with our eyes, visible light, is an example of electromagnetic.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Aufbau Principle An electron occupies the lowest energy orbital that can receive it.
Quantum Atom. Problem Bohr model of the atom only successfully predicted the behavior of hydrogen Good start, but needed refinement.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 - Electrons. Properties of Light What is light? A form of electromagnetic radiation: energy that exhibits wavelike behavior as it travels through.
Quantum Theory and the Electronic Structure of Atoms Chapter 6.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Quantum Theory and the Electronic Structure of.
Electrons as Particles and Waves
Chapter 5: Electrons in Atoms. Why focus on electrons? Scientists wanted to know why certain elements behaved similarly to some elements and differently.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Atomic Electronic Structure
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Quantum Theory and the Electronic Structure of Atoms Chapter 6.
The ratio of masses of one element that combine with a constant mass of another element.
Jeopardy! The Electronic Structure of an Atom ( Quantum Theory, e- Configuration, Orbital Diagrams, Periodic Trends) Jeopardy! The Electronic Structure.
Chapter 5 Review. Wave Nature of Light Wavelength- Wavelength- The distance between two consecutive peaks or troughs. Frequency- Frequency- The number.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHAPTER 11 NOTES MODERN ATOMIC THEORY RUTHERFORD’S MODEL COULD NOT EXPLAIN THE CHEMICAL PROPERTIES OF ELEMENTS.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
CHAPTER FOUR – ELECTRON CONFIGURATION SOUTH LAKE HIGH SCHOOL SCIENCE DEPARTMENT MS. SANDERS Chemistry.
The Quantum Mechanical Atom Chapter 8. Electron Distribution When 2 or more atoms join to form a compound, the nuclei of the atoms stay relatively far.
Chapter 5 Electrons in Atoms. Wave Nature of Light Wavelength (λ) – shortest distance between equivalent points on a continuous wave (unit: m or nm) Ex:
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Arrangement of Electrons in Atoms
Chapter 5: Arrangement of Electrons in Atoms
Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Chapter 6: Electromagnetic Radiation
Electromagnetic Radiation
Quantum Theory and the Electronic Structure of Atoms
Electromagnetic spectrum
Arrangement of electrons
Arrangement of Electrons in Atoms
Electrons in Atoms Chapter 5.
Electromagnetic spectrum
Atomic Electronic Structure
Electron Configuration
Chapter 6: Electromagnetic Radiation
Presentation transcript:

CHAPTER 6 ELECTRONIC STRUCTURE OF THE ATOM

COULOMB’S LAW (POTENTIAL ENERGY FORM)

REVIEW OF ELECTROMAGNETIC RADIATION c = λν λ is wavelength (in meters) ν is frequency (in s -1 ) c is speed (in m/s) for light, c = 3.00 x10 8 E = hν h is Planck’s Constant (6.626 x J· s)

LIGHT EMISSIONS OF SOLIDS

LIGHT EMISSION OF HYDROGEN GAS

BOHR’S HYDROGEN ATOM Light is absorbed or emitted from electrons transitioning between energy levels. Since only certain energies are observed, only certain energy levels can exist. This is called quantization of energy levels. Think of a ladder instead of a ramp.

ABSORPTION AND EMISSION

ENERGY LEVELS OF HYDROGEN

MATTER WAVES All matter has both particle and wave properties (wave/particle duality). Large objects moving slowly produce waves that are too small to observe. For small objects moving quickly (like electrons), wave properties are important.

WAVE NATURE OF ELECTRONS

HEISENBERG UNCERTAINTY PRINCIPLE

SCHRODINGER MODEL OF H Electrons act as standing waves Only certain wave functions are “allowed” Wave behavior is described by a wave function, Ψ. Ψ 2 describes the probability of finding the electron in a certain location. Also called the electron density

ORBITALS Each wave function describes the shape the electron cloud can take. These shapes are called orbitals. We organize orbitals by shells and subshells Shells define size and energy (n = 1, 2, 3…) Subshells define shape (s, p, d, f) Each subshell has a different number of orbitals s = 1 orbital p = 3 orbitals d = 5 orbitals f = 7 orbitals

SHAPES OF ORBITALS

ENERGIES OF ORBITALS Single electron atoms Multi electron atoms Why?

ELECTRON SPIN Electrons exhibit a magnetic field They don’t actually spin, but we think of them as spinning. They can only spin two ways. For sake of argument, we’ll call it up and down. Allowed spins: + ½ and – ½.

SPIN AND MAGNETISM Paramagnetic: unpaired electrons will align in presence of a real magnet. Ferromagnetic (real magnets): unpaired electrons aligned in the same direction. diamagnetic paramagnetic ferromagnetic

ELECTRON CONFIGURATIONS A listing of how many electrons occupy each orbital. 3 Rules Aufbau Principle – Electrons fill lowest energy orbitals first. Pauli Exclusion Principle – Each orbital can hold two electrons if they have opposing spins. Hund’s Rule – Each subshell is filled in a way to give the maximum number of unpaired electrons (maximum degeneracy).

THREE DIFFERENT NOTATIONS Electron Configuration List subshells and how many electrons they contain. 1s 2 2s 2 2p 6 3s 1 Noble Gas Notation [Ne]3s 1 where [Ne] = 1s 2 2s 2 2p 6.

PERIODIC BLOCKS