3-2 Warm Up Lesson Presentation Lesson Quiz Using Algebraic Methods

Slides:



Advertisements
Similar presentations
Solving Equations with Variables on Both Sides
Advertisements

Solving Systems of Linear Equations Graphically and Numerically
Solving Two-Step and Multi-Step Equations Warm Up Lesson Presentation
Solving Systems by Elimination
System of linear Equation
Solving Linear Systems in Three Variables 3-6
Multiplying or Dividing 2-2
Solving Inequalities by Multiplying or Dividing
Course Solving Equations with Variables on Both Sides
Properties of Real Numbers
Using Graphs and Tables to Solve Linear Systems 3-1
Complex Numbers and Roots
2-1 Solving Linear Equations and Inequalities Warm Up
5-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz
SYSTEMS OF LINEAR EQUATIONS
Objectives The student will be able to:
The student will be able to:
Solve Multi-step Equations
Using Graphs and Tables to Solve Linear Systems 3-1
Some problems produce equations that have variables on both sides of the equal sign.
Chapter 2 Section 3.
SYSTEMS OF EQUATIONS.
Solve by Substitution: Isolate one variable in an equation
Chapter 1: Expressions, Equations, & Inequalities
Revision - Simultaneous Equations II
Revision Simultaneous Equations I
Daily Quiz - Simplify the expression, then create your own realistic scenario for the final expression.
8-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Solving Equations by Adding or Subtracting Warm Up Lesson Presentation
Warm Ups {(2,0) (-1,3) (2,4)} Write as table Write as graph
Solving Systems by Substitution
Preview Warm Up California Standards Lesson Presentation.
Solving Systems of Linear Equations By Elimination
Systems with No Solution or Infinitely Many Solutions
Use the substitution method
§ 1.4 Solving Linear Equations.
Solve an equation by multiplying by a reciprocal
Solving Special Systems
Holt Algebra Using Algebraic Methods to Solve Linear Systems To solve a system by substitution, you solve one equation for one variable and then.
3-2 Warm Up Lesson Presentation Lesson Quiz Using Algebraic Methods
Warm Up Solve each equation for x. 1. y = x y = 3x – 4
Linear and Nonlinear Systems of Equations 7.1 JMerrill, 2010.
Solving Linear Systems Substitution Method Lisa Biesinger Coronado High School Henderson,Nevada.
Solving Linear Systems
Solving Special Systems
4-6 Row Operations and Augmented Matrices Warm Up Lesson Presentation
You can also solve systems of equations with the elimination method. With elimination, you get rid of one of the variables by adding or subtracting equations.
Algebra Using Algebraic Methods to Solve Linear Systems
Holt Algebra Using Algebraic Methods to Solve Linear Systems 3-2 Using Algebraic Methods to Solve Linear Systems Holt Algebra 2 Warm Up Warm Up Lesson.
Holt McDougal Algebra Solving Special Systems Warm Up Solve each equation. 1. 2x + 3 = 2x (x + 1) = 2x + 2 no solution infinitely many solutions.
Systems of Equations and Inequalities
Solving Systems by Elimination
Holt McDougal Algebra Using Algebraic Methods to Solve Linear Systems Warm Up Determine if the given ordered pair is an element of the solution set.
Solving Systems by Substitution
Bell Ringer 2. Systems of Equations 4 A system of equations is a collection of two or more equations with a same set of unknowns A system of linear equations.
Holt Algebra Solving Special Systems 6-4 Solving Special Systems Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Holt McDougal Algebra Solving Equations with Variables on Both Sides 1-5 Solving Equations with Variables on Both Sides Holt Algebra 1 Warm Up Warm.
Solving Systems of Linear Equations in 2 Variables Section 4.1.
Word Problem Day! With a tailwind, an airplane makes a 900-mile trip in 2.25 hours. On the return trip, the plane flies against the wind and makes the.
Solving Systems by Elimination
Warm Up 2x – 10 9 – 3x 12 9 Solve each equation for x. 1. y = x + 3
Objective I can solve systems of equations using elimination with addition and subtraction.
3-2 Warm Up Lesson Presentation Lesson Quiz Using Algebraic Methods
Chapter 3 - Linear Systems
Solving Systems by Elimination
Warm Up Simplify each expression. 1. 3x + 2y – 5x – 2y
3-2 Warm Up Lesson Presentation Lesson Quiz Using Algebraic Methods
Solving Linear Systems in Three Variables 3-6
Solving Equations by 1-2 Adding or Subtracting Warm Up
Solving Systems by Elimination
Presentation transcript:

3-2 Warm Up Lesson Presentation Lesson Quiz Using Algebraic Methods to Solve Linear Systems 3-2 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2 Holt Algebra 2

Warm Up Determine if the given ordered pair is an element of the solution set of 2x – y = 5 . 3y + x = 6 2. (–1, 1) no 1. (3, 1) yes Solve each equation for y. 3. x + 3y = 2x + 4y – 4 y = –x + 4 4. 6x + 5 + y = 3y + 2x – 1 y = 2x + 3

Objectives Solve systems of equations by substitution. Solve systems of equations by elimination.

Vocabulary substitution elimination

The graph shows a system of linear equations The graph shows a system of linear equations. As you can see, without the use of technology, determining the solution from the graph is not easy. You can use the substitution method to find an exact solution. In substitution, you solve one equation for one variable and then substitute this expression into the other equation.

Example 1A: Solving Linear Systems by Substitution Use substitution to solve the system of equations. y = x – 1 x + y = 7 Step 1 Solve one equation for one variable. The first equation is already solved for y: y = x – 1. Step 2 Substitute the expression into the other equation. x + y = 7 x + (x – 1) = 7 Substitute (x –1) for y in the other equation. 2x – 1 = 7 Combine like terms. 2x = 8 x = 4

Example 1A Continued Step 3 Substitute the x-value into one of the original equations to solve for y. y = x – 1 y = (4) – 1 Substitute x = 4. y = 3 The solution is the ordered pair (4, 3).

Example 1A Continued Check A graph or table supports your answer.

Example 1B: Solving Linear Systems by Substitution Use substitution to solve the system of equations. 2y + x = 4 3x – 4y = 7 Method 2 Isolate x. Method 1 Isolate y. 2y + x = 4 2y + x = 4 First equation. y = + 2 x = 4 – 2y Isolate one variable. 3x – 4y= 7 3x – 4y = 7 Second equation. 3x –4 +2 = 7 3(4 – 2y)– 4y = 7 Substitute the expression into the second equation. 12 – 6y – 4y = 7 3x + 2x – 8 = 7 12 – 10y = 7 5x – 8 = 7 Combine like terms. –10y = –5 5x = 15 x = 3 First part of the solution

By either method, the solution is . Example 1B Continued Substitute the value into one of the original equations to solve for the other variable. Method 1 Method 2 2y + (3) = 4 Substitute the value to solve for the other variable. + x = 4 1 + x = 4 2y = 1 x = 3 Second part of the solution By either method, the solution is .

Check It Out! Example 1a Use substitution to solve the system of equations. y = 2x – 1 3x + 2y = 26 Step 1 Solve one equation for one variable. The first equation is already solved for y: y = 2x – 1. Step 2 Substitute the expression into the other equation. 3x + 2y = 26 Substitute (2x –1) for y in the other equation. 3x + 2(2x–1) = 26 3x + 4x – 2 = 26 Combine like terms. 7x = 28 x = 4

Check It Out! Example 1a Continued Step 3 Substitute the x-value into one of the original equations to solve for y. y = 2x – 1 y = 2(4) – 1 Substitute x = 4. y = 7 The solution is the ordered pair (4, 7).

Check It Out! Example 1a Continued Check A graph or table supports your answer.

Use substitution to solve the system of equations. 5x + 6y = –9 Check It Out! Example 1b Use substitution to solve the system of equations. 5x + 6y = –9 2x – 2 = –y Method 1 Isolate y. Method 2 Isolate x. 2x – 2 = –y 2x – 2 = –y First equation. y = –2x + 2 x = 1 – y Isolate one variable. 5x + 6y = –9 5x + 6y = –9 Second equation. Substitute the expression into the second equation. 5(1 – y)+ 6y = –9 5x + 6(–2x + 2) = –9

Check It Out! Example 1b Continued Method 1 Isolate y. Method 2 Isolate x. 5x + 6(–2x + 2) = –9 Combine like terms. 5x – 12x + 12 = –9 10 – 5y + 12y = –18 –7x = –21 10 + 7y = –18 7y = –28 x = 3 y = –4 First part of the solution.

By either method, the solution is (3, –4). Example 1b Continued Substitute the value into one of the original equations to solve for the other variable. 5(3) + 6y = –9 5x + 6(–4) = –9 Substitute the value to solve for the other variable. 5x + (–24) = –9 15 + 6y = –9 6y = –24 5x = 15 y = –4 x = 3 Second part of the solution By either method, the solution is (3, –4).

You can also solve systems of equations with the elimination method You can also solve systems of equations with the elimination method. With elimination, you get rid of one of the variables by adding or subtracting equations. You may have to multiply one or both equations by a number to create variable terms that can be eliminated. The elimination method is sometimes called the addition method or linear combination. Reading Math

Example 2A: Solving Linear Systems by Elimination Use elimination to solve the system of equations. 3x + 2y = 4 4x – 2y = –18 Step 1 Find the value of one variable. 3x + 2y = 4 The y-terms have opposite coefficients. + 4x – 2y = –18 7x = –14 Add the equations to eliminate y. x = –2 First part of the solution

Example 2A Continued Step 2 Substitute the x-value into one of the original equations to solve for y. 3(–2) + 2y = 4 2y = 10 Second part of the solution y = 5 The solution to the system is (–2, 5).

Example 2B: Solving Linear Systems by Elimination Use elimination to solve the system of equations. 3x + 5y = –16 2x + 3y = –9 Step 1 To eliminate x, multiply both sides of the first equation by 2 and both sides of the second equation by –3. 2(3x + 5y) = 2(–16) –3(2x + 3y) = –3(–9) 6x + 10y = –32 –6x – 9y = 27 Add the equations. y = –5 First part of the solution

Example 2B Continued Step 2 Substitute the y-value into one of the original equations to solve for x. 3x + 5(–5) = –16 3x = 9 3x – 25 = –16 x = 3 Second part of the solution The solution for the system is (3, –5).

Example 2B: Solving Linear Systems by Elimination Check Substitute 3 for x and –5 for y in each equation. 3x + 5y = –16 2x + 3y = –9 –16 3(3) + 5(–5) 2(3) + 3(–5) –9 

Check It Out! Example 2a Use elimination to solve the system of equations. 4x + 7y = –25 –12x –7y = 19 Step 1 Find the value of one variable. 4x + 7y = –25 – 12x – 7y = 19 The y-terms have opposite coefficients. –8x = –6 Add the equations to eliminate y. x = First part of the solution

Check It Out! Example 2a Continued Step 2 Substitute the x-value into one of the original equations to solve for y. 4( ) + 7y = –25 3 + 7y = –25 7y = –28 Second part of the solution y = –4 The solution to the system is ( , –4).

Use elimination to solve the system of equations. Check It Out! Example 2b Use elimination to solve the system of equations. 5x – 3y = 42 8x + 5y = 28 Step 1 To eliminate x, multiply both sides of the first equation by –8 and both sides of the second equation by 5. –8(5x – 3y) = –8(42) 5(8x + 5y) = 5(28) –40x + 24y = –336 40x + 25y = 140 Add the equations. 49y = –196 First part of the solution y = –4

Check It Out! Example 2b Step 2 Substitute the y-value into one of the original equations to solve for x. 5x – 3(–4) = 42 5x = 30 5x + 12 = 42 x = 6 Second part of the solution The solution for the system is (6,–4).

Check It Out! Example 2b Check Substitute 6 for x and –4 for y in each equation. 5x – 3y = 42 8x + 5y = 28 42 5(6) – 3(–4) 8(6) + 5(–4) 28 

In Lesson 3–1, you learned that systems may have infinitely many or no solutions. When you try to solve these systems algebraically, the result will be an identity or a contradiction. An identity, such as 0 = 0, is always true and indicates infinitely many solutions. A contradiction, such as 1 = 3, is never true and indicates no solution. Remember!

Example 3: Solving Systems with Infinitely Many or No Solutions Classify the system and determine the number of solutions. 3x + y = 1 2y + 6x = –18 Because isolating y is straightforward, use substitution. 3x + y = 1 y = 1 –3x Solve the first equation for y. 2(1 – 3x) + 6x = –18 Substitute (1–3x) for y in the second equation. 2 – 6x + 6x = –18 Distribute. 2 = –18 x Simplify. Because 2 is never equal to –18, the equation is a contradiction. Therefore, the system is inconsistent and has no solution.

Check It Out! Example 3a Classify the system and determine the number of solutions. 56x + 8y = –32 7x + y = –4 Because isolating y is straightforward, use substitution. 7x + y = –4 y = –4 – 7x Solve the second equation for y. 56x + 8(–4 – 7x) = –32 Substitute (–4 –7x) for y in the first equation. 56x – 32 – 56x = –32 Distribute. –32 = –32  Simplify. Because –32 is equal to –32, the equation is an identity. The system is consistent, dependent and has infinite number of solutions.

Check It Out! Example 3b Classify the system and determine the number of solutions. 6x + 3y = –12 2x + y = –6 Because isolating y is straightforward, use substitution. 2x + y = –6 y = –6 – 2x Solve the second equation. 6x + 3(–6 – 2x)= –12 Substitute (–6 – 2x) for y in the first equation. 6x –18 – 6x = –12 Distribute. –18 = –12 x Simplify. Because –18 is never equal to –12, the equation is a contradiction. Therefore, the system is inconsistent and has no solutions.

Example 4: Zoology Application A veterinarian needs 60 pounds of dog food that is 15% protein. He will combine a beef mix that is 18% protein with a bacon mix that is 9% protein. How many pounds of each does he need to make the 15% protein mixture? Let x present the amount of beef mix in the mixture. Let y present the amount of bacon mix in the mixture.

Example 4 Continued Write one equation based on the amount of dog food: Amount of beef mix plus amount of bacon mix equals x y 60. 60 + = Write another equation based on the amount of protein: Protein of beef mix plus protein of bacon mix equals 0.18x 0.09y protein in mixture. 0.15(60) + =

Example 4 Continued x + y = 60 0.18x +0.09y = 9 Solve the system. x + y = 60 First equation y = 60 – x Solve the first equation for y. 0.18x + 0.09(60 – x) = 9 Substitute (60 – x) for y. 0.18x + 5.4 – 0.09x = 9 Distribute. 0.09x = 3.6 Simplify. x = 40

Example 4 Continued Substitute x into one of the original equations to solve for y. Substitute the value of x into one equation. 40 + y = 60 y = 20 Solve for y. The mixture will contain 40 lb of the beef mix and 20 lb of the bacon mix.

Check It Out! Example 4 A coffee blend contains Sumatra beans which cost $5/lb, and Kona beans, which cost $13/lb. If the blend costs $10/lb, how much of each type of coffee is in 50 lb of the blend? Let x represent the amount of the Sumatra beans in the blend. Let y represent the amount of the Kona beans in the blend.

Check It Out! Example 4 Continued Write one equation based on the amount of each bean: Amount of Sumatra beans plus amount of Kona beans equals x y 50. 50 + = Write another equation based on cost of the beans: Cost of Sumatra beans plus cost of Kona beans equals 5x 13y cost of beans. 10(50) + =

Check It Out! Example 4 Continued x + y = 50 5x + 13y = 500 Solve the system. x + y = 50 First equation y = 50 – x Solve the first equation for y. 5x + 13(50 – x) = 500 Substitute (50 – x) for y. 5x + 650 – 13x = 500 Distribute. –8x = –150 Simplify. x = 18.75

Check It Out! Example 4 Continued Substitute x into one of the original equations to solve for y. Substitute the value of x into one equation. 18.75 + y = 50 y = 31.25 Solve for y. The mixture will contain 18.75 lb of the Sumatra beans and 31.25 lb of the Kona beans.

Lesson Quiz Use substitution or elimination to solve each system of equations. 3x + y = 1 5x – 4y = 10 1. 2. y = x + 9 3x – 4y = –2 (–2, 7) (6, 5) 3. The Miller and Benson families went to a theme park. The Millers bought 6 adult and 15 children tickets for $423. The Bensons bought 5 adult and 9 children tickets for $293. Find the cost of each ticket. adult: $28; children’s: $17