Di-electron mass spectrum in 2 AGeV 12 C+ 12 C measured with HADES Romain Holzmann, GSI Darmstadt for the HADES collaboration  Introduction  the case.

Slides:



Advertisements
Similar presentations
The Physics of Dense Nuclear Matter
Advertisements

Direct virtual photon production in Au+Au collision at 200 GeV at STAR Bingchu Huang for the STAR collaboration Brookhaven National Laboratory Aug
Bingchu Huang, USTC/BNL 1 Bingchu Huang (for STAR Collaboration) University of Science and Technology of China (USTC) Brookhaven National Laboratory (BNL)
1 Measurement of phi and Misaki Ouchida f or the PHENIX Collaboration Hiroshima University What is expected? Hadron suppression C.S.R.
The physics of dense baryonic matter investigated with HADES Winter Workshop on Nuclear Dynamics February, 6 – 11, 2011 Winter Park, Colorado Joachim Stroth,
Dielectrons from HADES to CBM Bratislava (SAS, PI), Catania (INFN - LNS), Cracow (Univ.), Darmstadt,(GSI), Dresden (FZR), Dubna (JINR), Frankfurt (Univ.),Giessen.
Cold Nuclear Matter Effects on Open Heavy Flavor at RHIC J. Matthew Durham for the PHENIX Collaboration Stony Brook University
Studying hadron properties in baryonic matter with HADES „Nuclear matter at High densities” Hirschegg Hirschegg P. Salabura.
Christian Müntz (Univ. Frankfurt) for the HADES Collaboration, CPOD Challenges in Physics & Instrumentation Results from Heavy Ion and Elementary.
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
RICH PylosR. Gernhäuser (TU-München) The HADES RICH High Acceptance Di-Electron Spectrometer The HADES Spectrometer Special requirements RICH setup.
C B M Di-electron background studies and first results using compact RICH CBM Collaboration Meeting, 27 September 2007, Dresden Di-electron background.
Di-electron pair reconstruction CBM Collaboration Meeting, 28 February 2008, GSI-Darmstadt Di-electron pair reconstruction Tetyana Galatyuk GSI-Darmstadt.
PHENIX Fig1. Phase diagram Subtracted background Subtracted background Red point : foreground Blue point : background Low-mass vector mesons (ω,ρ,φ) ~
Victor Ryabov, PNPI SQM 2007 Levoca Jun.27, Measurement of the light mesons with the PHENIX experiment at RHIC Victor Riabov for the Collaboration.
1 Исследование образования электрон-позитронных пар в нуклон-нуклонных взаимодействиях на установке HADES Кирилл Лапидус, ИЯИ РАН Научная сессия-конференция.
Probing resonance matter with HADES „” „EMMI Workshop and XXVI Max Born Symposium” Wrocław Wrocław P. Salabura Jagiellonian University/GSI.
Wolfgang Kühn, Universität Giessen Recent Results from HADES Physics Motivation Low mass lepton pair enhancements SPS and DLS data The HADES detector at.
1 High Acceptance Di-Electron Spectrometer The activity of JINR for HADES project is performed in frame of theme /2005 with a first priority.
Dielectron production in C+C collisions at 2AGeV with HADES Jochen Markert For the HADES Collaboration.
Low-mass dielectron measurement at RHIC-PHENIX Yoshihide Nakamiya (for the PHENIX collaboration) Hiroshima University, Japan 1.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
The Experimental Quest for In-Medium Effects Romain Holzmann GSI Helmholtzzentrum für Schwerionenphysik, Darmstadt at 23 rd Indian-Summer School of Physics.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
HADES Upgrade for DIRAC-Phase-1 P. Salabura Jagiellonian University Kraków, GSI Darmstadt.
PARTICLE IDENTIFICATION IN THE HADES SPECTROMETER AND PARTICLE PRODUCTION IN C+C AT 2 A GeV The HADES spectrometer installed at GSI Darmstadt is devoted.
HADES coll. meeting, Oct. 31, 2007 Charged pion production in C+C at 1 and 2 A GeV results of data analysis from experiments NOV02 and AUG04 Jehad Mousa.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
Quest for omega mesons by their radiative decay mode in √s=200 GeV A+A collisions at RHIC-PHENIX ~Why is it “Quest”?~ Simulation Study Real Data Analysis.
Di-electron measurements with HADES at SIS100 Motivation Motivation HADES di-electron results (SIS 18) - summary HADES di-electron results (SIS 18) - summary.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
Motivations - HADES Dielectron analysis strategy Results & models comparison C+C 2 AGeV C+C 1AGeV HADES experiment: dilepton spectroscopy in C+C (1 and.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
Experimental data by HADES PID method As an example let`s take deuterons and protons with p = 750 MeV/c. Their PDFs are gaussians with mean at β = p/(
HADES versus DLS: no puzzle anymore ! Elena Bratkovskaya , Workshop ‚Bremsstrahlung in dilepton production‘ GSI, Darmstadt.
1 Pion production in np collisions at 1.25AGeV A.Kurilkin, P.Kurilkin, V.Ladygin, A.Ierusalimov, T.Vasiliev, LHEP-JINR, Dubna, Russia For the HADES collaboration.
WWND 2011 Michael Weber for the HADES collaboration Inclusive e + e - pair production in p+p and p+Nb collisions at E = 3.5 GeV Introduction.
RPC upgrade for the HADES Tracking: MDC e -,e + identification with RICH- TOF/PreShower  0.4 GeV/c TOF is not sufficient- Pre-Shower p,  identification.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
Differential cross section in deuteron-proton elastic scattering at 1.25 GeV/u P.Kurilkin, A.Kurilkin, V.Ladygin, T.Vasiliev LHEP-JINR For the HADES collaboration.
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
JPS/DNPY. Akiba Single Electron Spectra from Au+Au collisions at RHIC Y. Akiba (KEK) for PHENIX Collaboration.
Study dileptons (e + e - ) and direct photons fn MPD/NICA NICA Roundetable Workshop IV: Physics at NICA9-12 October In-medium properties of hadrons:
28/8/2006NN2006, Rio de Janeiro August 28 - September 1, Dielectron production in C+C collisions with HADES Pavel Tlusty, NPI Rez for the Hades.
A Highly Selective Dilepton Trigger System Based on Ring Recognition Alberica Toia II Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
Hadronic resonance production in Pb+Pb collisions from the ALICE experiment Anders Knospe on behalf of the ALICE Collaboration The University of Texas.
January 13, 2004A. Cherlin1 Preliminary results from the 2000 run of CERES on low-mass e + e - pair production in Pb-Au collisions at 158 A GeV A. Cherlin.
XLVII Int. Winter Meeting, Bormio, Jan , 2009 CHARGED PION PRODUCTION IN C+C AND Ar+KCl COLLISIONS MEASURED WITH HADES Pavel Tlustý, NPI Řež for.
PHOBOS at RHIC 2000 XIV Symposium of Nuclear Physics Taxco, Mexico January 2001 Edmundo Garcia, University of Maryland.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
Hadron production in C+C at 2 A GeV measured by the HADES spectrometer Nov02 gen3 analysis and results for spline tracks (shown in Dubna) changes - removing.
Motivations - HADES C+C 1 AGeV, 2 AGeV - measured excess: beam energy dependence p+p, d+p 1.25 (A)GeV - Studies of NN-Bremsstrahlung and  Dalitz decay.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Dilepton production in p+p collisions at 3.5 GeV experimental results and their interpretation Anar Rustamov for the HADES collaboration GSI Helmholtzzentrum.
J. Zhao Hard Probe 2012, Cagliari 1, Lawrence Berkeley National Lab, USA 2, Shanghai Institution of Applied Physics, CAS, China Di-electron Production.
1 More information: Status Report of HADES Project (JINR Participation) Theme: /2005 Leaders:
PHENIX J/  Measurements at  s = 200A GeV Wei Xie UC. RiverSide For PHENIX Collaboration.
Quark Matter 2002, July 18-24, Nantes, France Dimuon Production from Au-Au Collisions at Ming Xiong Liu Los Alamos National Laboratory (for the PHENIX.
Fall DNP Meeting,  meson production in Au-Au and d-Au collision at \ /s NN = 200 GeV Dipali Pal Vanderbilt University (for the PHENIX collaboration)
Di-electron elliptic flow in
Dielectron Spectroscopy
Highlights from HADES Au+Au collisions at 1.23 AGeV
Collaboration: 18 Inst members Motivation Detector description
HADES The Baryon-rich Side of the Phase Diagram
Simulation results for the upgraded RICH detector in the HADES experiment. Semen Lebedev1,3, Jürgen Friese2, Claudia Höhne1, Tobias Kunz2, Jochen Markert4.
Status of the "direct" photon reconstruction
Measurement of p0 – induced single leptons in the HADES RICH
Dilepton production with HADES
Presentation transcript:

Di-electron mass spectrum in 2 AGeV 12 C+ 12 C measured with HADES Romain Holzmann, GSI Darmstadt for the HADES collaboration  Introduction  the case of moderate beam energies  a reminder: DLS  The HADES experiment  setup  data analysis  First results & comparison with theory Quark Matter 2005

QM2005 Romain Holzmann, GSI2 The physics case Study the properties of hot and dense nuclear matter with emphasis on electromagnetic probes in the time-like regime!  What are the relevant observables as nuclear density and/or temperature change?  Quark picture vs. hadronic picture? Additional self-energy terms due to meson- baryon coupling    p - beams SIS 18 SIS 200 T [MeV] 300 LHC RHIC SPS Partial restoration of chiral symmetry (vs. T,ρ) W. Weise et al.

QM2005 Romain Holzmann, GSI3 The case of moderate beam energies  Final state of HI 1-2 AGeV (√s NN = GeV)  up to 200 charged particles  up to 10 % pions → baryon dominated  very little strangeness  Increase of baryon density   (3 >   > 2) = 15 fm/c  fireball comparatively long-lived …  … at moderate densities and moderate T  Production of vector mesons below threshold  co-operative processes (multi-step)  production confined to high-density phase  one vector meson decaying into a lepton pair per 1-10 million reactions!!! S. Bass et al. IQMD 15 fm/c  

QM2005 Romain Holzmann, GSI4 Enhanced dilepton yields from DLS DLS at the Bevalac ( )  DLS puzzle!? Data: R.J. Porter et al.: PRL 79 (1997) 1229 BUU model: E.L. Bratkovskaya et al.: NP A634 (1998) 168 transport + in-medium spectral functions Giessen BUU

QM2005 Romain Holzmann, GSI5 RQMD description of the DLS data Calculation: K. Shekhter, C. Fuchs et al. (Tübingen) Phys. Rev. C68 (2003)  collisional broadening of ω (  Г( ω ) = 200 MeV)  extended VDM + decoherence  BR scaling of VM

QM2005 Romain Holzmann, GSI6 High Acceptance DiElectron Spectrometer Use di-electron pairs to investigate vector meson production (  ).  Spectrometer with  high geometric acceptance  high invariant mass resolution  high rate capability  Utilizes dedicated LVL2 trigger to select events before storing.  Installed at the SIS18 at GSI. Beams of: –Pions –Protons –Nuclei Operated by a collaboration of more than 100 physicists from Cyprus, Czech Rep., France, Germany, Italy, Poland, Portugal, Russia, Slovakia, Spain Project launched in late 1994, 6 years R&D and construction. First production run in 2002

QM2005 Romain Holzmann, GSI7  Geometry  Full azimuth, polar angles 18 o - 85 o (y = 0 – 2)  Segmented solid targets or LH 2 target  Pair acceptance  0.35  Particle identification  RICH: CsI solid photo cathode, C 4 F 10 radiator, N o  80, pion suppression  10 4  TOF: 384 scintillator rods  TOFino: 24 scintillator paddles  temporary solution, RPC in future  Pre-Shower: 18 pad chambers & lead converters)  Momentum measurement  ILSE: superconducting toroid with B  = 0.36 Tm  MDC: 24 multi-wire drift chambers, single-cell resolution  100  m The spectrometer design 1 m

QM2005 Romain Holzmann, GSI8 Fast 2 nd level trigger Up to 20 kHz LVL1 fast multiplicity trigger full event information digitized on-line selection of electron candidates LVL2 triggered events are transported to mass storage enhancement

QM2005 Romain Holzmann, GSI9  November 2001: commissioning run target = 5% 45 Mevents  C+C 2 AGeV LVL1 triggered events (M ch. >3) : 45 Mevents 7.3 Mevents  C+C 1 AGeV LVL1 trigger : 7.3 Mevents  full coverage with inner MDC chambers (  p/p  10% at 0.7 GeV/c)  November 2002: C+C 2 AGeV, commissioning and physics runs 220 Mevents  target= 2 x 2.5%, 56% LVL1 trigger + 44% LVL2 trigger 220 Mevents  6 outer drift chambers (MDC) in 4 sectors  October 2003: p+p commissioning run (1 GeV, 2 GeV)  full coverage with outer MDC III (4 MDC IV) (  p/p  1.5 % at 0.7 GeV/c)  February 2004: p+p 2GeV production run 400 Mevents  target 5 cm l-H Mevents  August 2004: C+C 1AGeV production run 650 Mevents  3x1.5 % target, 56% LVL1 trigger + 44% LVL2 trigger650 Mevents HADES experimental runs

QM2005 Romain Holzmann, GSI10 Electron/positron identification Events with lepton multiplicity  1 in LVL1 triggered events: only 1.2 % !  Matched RICH and META signals (LVL2)  + matching with fully reconstructed tracks linear z axis ! log. z axis ! yield [arb. units] cut on 

QM2005 Romain Holzmann, GSI11 Singles efficiencies and purities after PID and matching Contamination:  lepton fakes  15% (mostly closed pairs)  hadrons <3% Efficiency:  80% Purity:  85% Low-resolution tracking mode used (σ M /M ≈ 10%) q  p [MeV/c] e-e- e+e+ Simulation

QM2005 Romain Holzmann, GSI12 Pair clean-up strategies Pair rejection cuts:  C0 = pairing  C1 = C0 + double hit rejection Remove tracks with ambiguous detector hit(s)  C2 = C1 + opening angle <9 o Remove both tracks from sample  C3 = C2 + close pair cand. rejection Remove track if a non-fitted track candidate is within 10 o RICH MDC I-II TOF/Shower Mag field C1C2 C3 C0 Relative suppression C1C2 C3 C0 <9 o C1 C2 C3

QM2005 Romain Holzmann, GSI13 Combinatorial background subtraction  Combinatorial background (CB):  from like-sign pairs  CB +- = N e+e+ + N e-e- or CB =  Signal:  S +- = N e+e- - CB +- M [MeV/c 2 ] Counts /MeV/c 2 / coll. Data Nov02 N e+e- Signal CB M [MeV/c 2 ] Signal / CB

QM2005 Romain Holzmann, GSI14 Raw 2 AGeV C+C e + e - mass spectrum No efficiency / acceptance correction! Normalized to the pion multiplicity. ■C+C data ●cocktail generator π0π0 η Tracking in low-resolution mode! Systematic errors:  PID cuts  pair clean-up  normalization  +40%/-30% signal < 140 MeV/c 2 : counts signal > 140 MeV/c 2 : 1420 counts

QM2005 Romain Holzmann, GSI15 Efficiency-corrected mass spectrum Efficiency correction applied to pair data (e - and e + legs): → accounts for detector inefficiencies reconstruction inefficiencies Compared with a cocktail based on known or m t -scaled meson multiplicities and their vacuum decay properties within HADES geometric acceptance and mass resolution (σ m (ω) = 10%). pair opening angle >9 o, p t > 100 MeV/c within acceptance systematic errors: +50%/-40%

QM2005 Romain Holzmann, GSI16 p t spectra with mass cuts efficiency-corrected data only statistical errors are shown pair opening angle >9 o, p t > 100 MeV/c

QM2005 Romain Holzmann, GSI17 Comparison with transport theory (I)  Giessen HSD  Tübingen RQMD  Frankfurt UrQMD  etc. Comparison of efficiency-corrected data with theory folded with HADES filter:  geometrical acceptance  momentum resolution HSD v2.5 of May ´05, E. Bratkovskaya et al. pair opening angle >9 o, p t > 100 MeV/c

QM2005 Romain Holzmann, GSI18 Comparison with transport theory (II) pair opening angle >9 o p t > 100 MeV/c resolution smeared RQMD calculation done by D. Cozma and C. Fuchs vacuum calculation in-medium calculation  collisional broadening  extended VDM + decoherence  Brown-Rho scaling of VMs See Phys. Rev. C68 (2003) for details.

QM2005 Romain Holzmann, GSI19 RQMD mass and p t spectra

QM2005 Romain Holzmann, GSI20 Conclusions & outlook  HADES is up and running  First physics results obtained in low-resolution mode on C+C  Final 2 AGeV C+C spectra after  full correction for reconstruction efficiencies  investigation of systematic errors  Ongoing analysis of 1 AGeV C+C data  direct comparison with DLS  Ongoing analysis of pp data  exp. check of η reconstruction eff.  Scheduled physics runs  Ca+Ca at 1 and 2 AGeV (Sep. 2005)  proton, deuteron and pion beams (2006)  Completion of outer tracking system (end 2005)  full hi-res tracking  Upgrade of TOF subsystem with RPC (2007)  Ni+Ni & Au+Au runs  Feasibility studies for HADES operation at FAIR  2-8 AGeV runs

QM2005 Romain Holzmann, GSI21 The people behind it G.Agakishiev 9, C.Agodi2, A.Balanda5, R.Bassini10, G.Bellia2,3, D.Belver19, J.Bielcik6, A.Blanco4, M.Böhmer14, C.Boiano10, A.Bortolotti10, J.Boyard16, S.Brambilla10, P.Braun-Munzinger6, P.Cabanelas19, S.Chernenko7, T.Christ14, R.Coniglione2, M.Dahlinger6, J.Díaz20, R.Djeridi9, F.Dohrmann18, I.Durán19, T.Eberl14, W.Enghardt18, L.Fabbietti14, O.Fateev7, P.Finocchiaro2, P.Fonte4, J.Friese14, I.Fröhlich9, J.Garzón19, R.Gernhäuser14, M.Golubeva12, D.González-Díaz19, E.Grosse18, F.Guber12, T.Heinz6, T.Hennino16, S.Hlavac1, J.Hoffmann6, R.Holzmann6, A.Ierusalimov7, I.Iori10,11, A.Ivashkin12, M.Jaskula5, M.Jurkovic14, M.Kajetanowicz5, B.Kämpfer18, K.Kanaki18, T.Karavicheva12, D.Kirschner9, I.Koenig6, W.Koenig6, B.Kolb6, U.Kopf6, R.Kotte18, J.Kotulic-Bunta1, R.Krücken14, A.Kugler17, W.Kühn9, R.Kulessa5, S.Lang6, J.Lehnert9, L.Maier14, P.Maier-Komor14, C.Maiolino2, J.Marín19, J.Markert8, V.Metag9, N.Montes19, E.Moriniere16, J.Mousa15, M.Münch6, C.Müntz8, L.Naumann18, R.Novotny9, J.Novotny17, W.Ott6, J.Otwinowski5, Y.Pachmayer8, V.Pechenov9, T.Pérez9, J.Pietraszko6, J.Pinhao4, R.Pleskac17, V.Pospísil17, W.Przygoda5, A.Pullia10,11, N.Rabin13, B.Ramstein16, S.Riboldi10, J.Ritman9, P.Rosier16, M.Roy-Stephan16, A.Rustamov6, A.Sadovsky18, B.Sailer14, P.Salabura5, P.Sapienza2, A.Schmah6, W.Schön6, C.Schroeder6, E.Schwab6, P.Senger6, R.Simon6, V.Smolyankin13, L.Smykov7, S.Spataro2, B.Spruck9, H.Stroebele8, J.Stroth8,6, C.Sturm6, M.Sudol8,6, V.Tiflov12, P.Tlusty17, A.Toia9, M.Traxler6, H.Tsertos15, I.Turzo1, V.Wagner17, W.Walus5, C.Willmott19, S.Winkler14, M.Wisniowski5, T.Wojcik5, J.Wüstenfeld8, Y.Zanevsky7, P.Zumbruch6 1)Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia 2)Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania, Italy 3)Dipartimento di Fisica e Astronomia, Università di Catania, 95125, Catania, Italy 4)LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Departamento de Física da Universidade de Coimbra, Coimbra, PORTUGAL. 5)Smoluchowski Institute of Physics, Jagiellonian University of Cracow, Cracow, Poland 6)Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany 7)Joint Institute of Nuclear Research, Dubna, Russia 8)Institut für Kernphysik, Johann Wolfgang Goethe-Universität, Frankfurt, Germany 9)II.Physikalisches Institut, Justus Liebig Universität Giessen, Giessen, Germany 10)Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy 11)Dipartimento di Fisica, Università di Milano, Milano, Italy 12)Institute for Nuclear Research, Russian Academy of Science, Moscow, Russia 13)Institute of Theoretical and Experimental Physics, Moscow, Russia 14)Physik Department E12, Technische Universität München, Garching, Germany 15)Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus 16)Institut de Physique Nucléaire d'Orsay, CNRS/IN2P3, Orsay Cedex, France 17)Nuclear Physics Institute, Academy of Sciences of Czech Republic, Rez, Czech Republic 18)Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, PF , Dresden, Germany 19)Departamento de Física de Partículas. University of Santiago de Compostela Santiago de Compostela, Spain 20)Instituto de Física Corpuscular, Universidad de Valencia-CSIC,46971-Valencia, Spain GSI

QM2005 Romain Holzmann, GSI22 Cavalry to the rescue!

QM2005 Romain Holzmann, GSI23 Momentum resolution: 2,3,4 MDC planes Resolution [%] momentum [GeV/c] Nov'02 present anal.

QM2005 Romain Holzmann, GSI24 HADES geometrical acceptance Rapidity: y = 0.2 – 1.7 (DLS had 0.7 – 1.6) For comparison: y 1/2 = 1 AGeV y 1/2 = 2 AGeV Schicker et al., NIM A380 (1996) 586

QM2005 Romain Holzmann, GSI25 p T & y acceptances p T & y acceptances

QM2005 Romain Holzmann, GSI26 Event vertex resolution Segmented C target: 2 x 2.5%, 2 cm apart σ z < 5 mm

QM2005 Romain Holzmann, GSI27 On-line/off-line comparison  Trigger condition used in November 2002 run:  At least one good electron candidate  Ring matched with META hit  Data rate reduced by 92 %  Pair enhancement by factor of  9  Single lepton efficiency of IPUs + matching  62% (pairs 82%) M e+e- [MeV/c 2 ] Yield /event [a.u]  e+e- > 4 0 Scaled down by 9.2 ! LVL2 LVL1 No bias on data !

QM2005 Romain Holzmann, GSI28 Charged pions 2 AGeV) Data in good agreement with TAPS/KaoS results! KaoS "Temperature"Multiplicity TAPS HADES two temperature fit

QM2005 Romain Holzmann, GSI29 K 0  π + π - reconstruction 2 AGeV) 2000 kaons found in 45 million events Peter Zumbruch,GSI

QM2005 Romain Holzmann, GSI30 Meson multiplicity systematics Data taken from:  TAPS  KaoS  Bevalac exp.

QM2005 Romain Holzmann, GSI31 DLS excess yields DLS experiment observed large excess of di-electrons when compared to known sources pion, eta Dalitz decays Effect much stronger than at SPS energies Visible also in light-ion induced reactions No conclusive theoretical explanation (yet) Experimental problem or new physics ??

General dilepton excess in DLS data! Theory: Frankfurt UrQMD Ernst et al. PRC 58 Overall yield excess in MeV mass region!

A reminder: the DLS pp data Data: Wilson et al. PRC 57 (1997) 1865 Theory (folded with the DLS response): C. Ernst et al. PRC 58 (1998) 447  Fair agreement of total yields

Real trouble starts with pd data! Data: DLS Theory: Ernst et al. PRC 58 (1998) 447 What's different? Fermi momentum correlations pn collisions

QM2005 Romain Holzmann, GSI35 HADES in pictures RICH PreShower Magnet RICH +MDC I

QM2005 Romain Holzmann, GSI36 min. bias RICH signal + tracking RICH: eff.: 96%, suppr.: 49%, purity.: 78% (lepton ID 1) „Hit matching in RICH + inner MDC“ Pre-Shower condition (lepton ID 2) + + p*q [MeV/c] v/c e+e+ e-e- p momentum vs. velocity (lepton ID 3) Azimuthal angle  [°] For each sector ”Kick”  [°] Calculated azimuthal deflection (Reduction of false hit combinations) + e-e-e-e- Track reconstruction