1 Dalitz analysis in Bch  D(*) 0 K decays via K-matrix approach Ben Lau Princeton University BaBar Collaboration Meeting, 22 May 2005.

Slides:



Advertisements
Similar presentations
Resent BES Results on Scalar Mesons Zhipeng Zheng (Representing BES Collaboration) Institute of High Energy Physics, CAS GHP-2004, Oct. 25.
Advertisements

José A. Oller Univ. Murcia, Spain Final State Interactions in Hadronic D decays José A. Oller Univ. Murcia, Spain Introduction FSI in the D + !  -  +
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
Study of B  D S ( * )  D*  *   and D ( * ) (4  )   at CLEO Jianchun Wang Syracuse University Representing The CLEO Collaboration DPF 2000 Aug 9.
24/08/2005LHCb UK Meeting, Dublin1 First steps toward γ from B + →D 0 (K 0 π + π - )K + with Tom Barber, Val Gibson, Cristina Lazzeroni and Jim Libby.
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
Recent Charm Results From CLEO Searches for D 0 -D 0 mixing D 0 -> K 0 s  +  - D 0 ->K *+ l - Conclusions Alex Smith University of Minnesota.
Sep 11, 2006SLUO Anual Meeting Search for Super-Penguins: CP Violation in B 0 ->K+K-K 0 D. Dujmic, SLAC For BABAR Collaboration D. Dujmic, SLAC For.
Charm 2007, Ithaca, NY, 8/06/2007Brian Meadows, U. Cincinnati Low Mass S -wave K  and  Systems  S- waves in heavy flavour physics ?  What is known.
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
SLAC DOE Review, Jun CP Violation in Penguin Decays Denis Dujmic, SLAC.
B decays to charm hadrons at Belle M.-C. Chang Fu Jen Catholic University (On behalf of Belle Collaboration) European Physical Society HEP2007 International.
Linear and generalised linear models
By Rudin Petrossian-Byrne Supervisors: Dr. Marco Gersabeck & Stefanie Reichert CERN Summer Student Programme 2014.
Physics 151: Principles of Physics: Mechanics & Heat (Honors) Prof. Stan Zygmunt Neils
A Primer on Partial Wave Analysis in hadron spectroscopy Charm 2006 International Conference on Tau-Charm Physics Beijing, June 5-7 Klaus Peters IKF, JWGU.
EPS 2003 AachenDaniele Pedrini - Focus results1 FOCUS mixing and CPV results Recent results on charm from E831-FOCUS Daniele Pedrini (INFN-Milano) on behalf.
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
Amplitude Analysis of the D 0        Dalitz Plot G. Mancinelli, B.T. Meadows, K. Mishra, M.D. Sokoloff University of Cincinnati BaBar Coll. Meeting,
Dalitz Plot Analysis of D Decays Luigi Moroni INFN-Milano.
Analysis of E852 Data at Indiana University Ryan Mitchell PWA Workshop Pittsburgh, PA February 2006.
A study of the Kπ system Mikhail Kozyulin, (CERN, BINP) 1.
SUPA Advanced Data Analysis Course, Jan 6th – 7th 2009 Advanced Data Analysis for the Physical Sciences Dr Martin Hendry Dept of Physics and Astronomy.
CP violation measurements with the ATLAS detector E. Kneringer – University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA “Determination.
Zijin Guo Univ. of Hawaii Representing BES Collaboration J/    pp and  BES Beijing, China.
A. Dabrowski, November Ratio(ke3/pipi0); Ratio(kmu3/pipi0) 1 Semileptonic Decays Γ(Ke3) / Γ(pipi0) Γ(Kmu3) / Γ(pipi0) Γ(Kmu3) / Γ(ke3) Emphasis.
Singa and kappa analyses at BESII Ning Wu Institute of High Energy Physics, CAS Beijing, China January 25-26, 2007.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
Zhi-Yong Zhou Southeast university Zhangjiajie 周智勇 东南大学.
1 Charm Semileptonic Decay The importance of charm SL decay Pseudoscalar l decay Vector l decay –Analysis of D  K*  –The V/PS enigma :  (D+  K*  /
1 Scalar Mesons in D and B Decays Scalar Mesons in D and B Decays Stefan Spanier University of Tennessee.
Trees Example More than one variable. The residual plot suggests that the linear model is satisfactory. The R squared value seems quite low though,
D s Dalitz Plot Analyses from the B Factories Mark Convery representing the BaBar Collaboration SLAC National Accelerator Laboratory Charm 2010, Beijing.
On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0.
Physics based MC generators for detector optimization Integration with the software development (selected final state, with physics backgrounds event generator)
Scalar and pseudoscalar mesons at BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, CAS, China Charm06, June 5-7, 2006,
17/09/19991 Status of the  Dalitz analysis Paolo Dini Luigi Moroni Dario Menasce Sandra Malvezzi Paolo Dini Luigi Moroni Dario Menasce Sandra Malvezzi.
Geology 5640/6640 Introduction to Seismology 2 Feb 2015 © A.R. Lowry 2015 Read for Wed 4 Feb: S&W (§2.4); Last time: The Wave Equation! The.
Partial Wave Analysis What is it Relation to physical properties Properties of the S-matrix Limitation and perspectives Examples : peripheral production.
Exclusive ΦΦ in E690 G. Gutierrez FNAL-E690 Collaboration Small-X and Diffraction Physics Conference FERMILAB, Sep 2003.
Sandra Malvezzi - Charm Meson Results in Focus 1 Sandra Malvezzi I.N.F.N. Milano Meson Lifetimes, Decays, Mixing and CPV in FOCUS.
Studies of Charm Meson Decays at BaBar Kalanand Mishra University of Cincinnati University of Cincinnati On behalf of the BaBar Collaboration DPF 06, Honolulu,
Chiral Symmetry Breaking,  and  History: Gell-Mann and Levy, Nambu, Adler and Weinberg laid the foundations in the 1960s. Many theorists realised the.
Bethe-Salper equation and its applications Guo-Li Wang Department of Physics, Harbin Institute of Technology, China.
Mitchell Naisbit University of Manchester A study of the decay using the BaBar detector Mitchell Naisbit – Elba.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
F. Martínez-Vidal IFIC – Universitat de València-CSIC (on behalf of the BaBar Collaboration)  from B ±  D (*)0 [K S     ]K (*)±  in BaBar Outline.
Kalanand Mishra June 29, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
Kalanand Mishra February 23, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 decay Giampiero.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
B→ X(3872)K and Z(4430)K at Belle Kenkichi Miyabayashi Nara Women’s Univ. For Belle collaboration QWG2007 at DESY 2007/Oct./19th.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
LNF 12/12/06 1 F.Ambrosino-T. Capussela-F.Perfetto Update on        Dalitz plot slope Where we started from A big surprise Systematic checks.
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
Linear Algebra Review.
Double Ks0 Photoproduction off the proton at CLAS
Quantum One.
Search for Super-Penguins: CP Violation in B0->K+K-K0
Measurements of some J/ and c decays at BES
Adaptive Perturbation Theory: QM and Field Theory
Update of the Milano Dalitz Plot Analysis
Our Parametrization of D0K-K+0 Dalitz Plot
The Measurement of sin2β(eff) in Loop-Dominated B Decays with BABAR
Dalitz Plot Analysis of D0K–K+0
Recent BESII Hot Topics
Presentation transcript:

1 Dalitz analysis in Bch  D(*) 0 K decays via K-matrix approach Ben Lau Princeton University BaBar Collaboration Meeting, 22 May 2005

2 Dalitz plot via K-matrix History of the Analysis: 1.March 2004 : A first attempt to D 0  Ks pi+ pi- in breco group. 2.August 2004: announced the dalitz plot fit using Isobar Model (sum of BW’s) (See: BL talk: 3.October 2004: Start the K-matrix fit attempt to solve  (500) and  (1000) 4.Feb 2005: Preliminary fit using K-matrix is announced. (See: LL talk: 5.May 2005: Updated fit results(this talk!)

3 K-matrix for dummies We start from first principle: S-matrix respect Unitary: (unitary means probality conservations) (equation 1: unitary of S-matrix) (equation2: rewrite S-matrix as T-matrix) Now I define K: Notice: (K and T is now related) Equation4: Most important equation  Unitary condition will be preserved. (the T-matrix: The one you observed from the experiment!) (equation3: subsitute 2 in 1) From (4): re-write T as a function of K

4 Proof of the Breit-Wigner in K-matrix One of the easiest way to write down the K-matrix is just sum of the poles… If we have one single resonance  1 pole is needed. where Since: Breit-Wigner formula Start from K: (sum of the K-matrix pole) K-matrix diverge when

5 Flatte’s Formula K matrix can be generalized to coupled channel decay, eg: Consider 2 by 2 matrices:In picture: Follow the pervious exercise, one can derive the famous Flatte’s Formula: Rescattering is NOT included in sum of BW’s model

6 Proof: LASS parameterization is equivalent as K-matrix Now consider K-matrix with background, I can write: where the delta_b is the background phase Exactly the LASS parameterization They are equivalent parameterization! Don’t believe me? Let’s check it in Mathematica: Since: We got: LASS parameterization

7 slow varying function (background term) pole term Adler zero term. (suppressed the false kinematics singularity) hep-ph/ Intensity plot Resonances are heavily overlapped. Can’t simply sum BW’s  S-wave parameterization

8 hep-ph/ Argand plot It’s elastic below 1GeV (i.e., no channel open up) At 1GeV, KK open up, elasticity drop! Eta-eta’ opens up, elasticity drops again! Elasticity

9 K-matrix parametization The S-wave are dominated by the board, overlapped resonance. --Angular Dependence (spin 0,1,2) --Relativistic Breit-Wigner Form Factor Non-resonance term K-matrix Model: Isobar Model: Sum of BW’s for Spin1 and 2 Sum of K-matrix Pole for Spin 0 SUM OF THE BW’s MODEL in ICHEP 04: (BAD 899)

10 //Compute this crazy determinent det = (n15*n24*n33*n42*n51 - n14*n25*n33*n42*n51 - n15*n23*n34*n42*n51 + n13*n25*n34*n42*n51 + n14*n23*n35*n42*n51 - n13*n24*n35*n42*n51 - n15*n24*n32*n43*n51 + n14*n25*n32*n43*n51 + n15*n22*n34*n43*n51 - n12*n25*n34*n43*n51 - n14*n22*n35*n43*n51 + n12*n24*n35*n43*n51 + n15*n23*n32*n44*n51 - n13*n25*n32*n44*n51 - n15*n22*n33*n44*n51 + n12*n25*n33*n44*n51 + n13*n22*n35*n44*n51 - n12*n23*n35*n44*n51 - n14*n23*n32*n45*n51 + n13*n24*n32*n45*n51 + n14*n22*n33*n45*n51 - n12*n24*n33*n45*n51 - n13*n22*n34*n45*n51 + n12*n23*n34*n45*n51 - n15*n24*n33*n41*n52 + n14*n25*n33*n41*n52 + n15*n23*n34*n41*n52 - n13*n25*n34*n41*n52 - n14*n23*n35*n41*n52 + n13*n24*n35*n41*n52 + n15*n24*n31*n43*n52 - n14*n25*n31*n43*n52 - n15*n21*n34*n43*n52 + n11*n25*n34*n43*n52 + n14*n21*n35*n43*n52 - n11*n24*n35*n43*n52 - n15*n23*n31*n44*n52 + n13*n25*n31*n44*n52 + n15*n21*n33*n44*n52 - n11*n25*n33*n44*n52 - n13*n21*n35*n44*n52 + n11*n23*n35*n44*n52 + n14*n23*n31*n45*n52 - n13*n24*n31*n45*n52 - n14*n21*n33*n45*n52 + n11*n24*n33*n45*n52 + n13*n21*n34*n45*n52 - n11*n23*n34*n45*n52 + n15*n24*n32*n41*n53 - n14*n25*n32*n41*n53 - n15*n22*n34*n41*n53 + n12*n25*n34*n41*n53 + n14*n22*n35*n41*n53 - n12*n24*n35*n41*n53 - n15*n24*n31*n42*n53 + n14*n25*n31*n42*n53 + n15*n21*n34*n42*n53 - n11*n25*n34*n42*n53 - n14*n21*n35*n42*n53 + n11*n24*n35*n42*n53 + n15*n22*n31*n44*n53 - n12*n25*n31*n44*n53 - n15*n21*n32*n44*n53 + n11*n25*n32*n44*n53 + n12*n21*n35*n44*n53 - n11*n22*n35*n44*n53 - n14*n22*n31*n45*n53 + n12*n24*n31*n45*n53 + n14*n21*n32*n45*n53 - n11*n24*n32*n45*n53 - n12*n21*n34*n45*n53 + n11*n22*n34*n45*n53 - n15*n23*n32*n41*n54 + n13*n25*n32*n41*n54 + n15*n22*n33*n41*n54 - n12*n25*n33*n41*n54 - n13*n22*n35*n41*n54 + n12*n23*n35*n41*n54 + n15*n23*n31*n42*n54 - n13*n25*n31*n42*n54 - n15*n21*n33*n42*n54 + n11*n25*n33*n42*n54 + n13*n21*n35*n42*n54 - n11*n23*n35*n42*n54 - n15*n22*n31*n43*n54 + n12*n25*n31*n43*n54 + n15*n21*n32*n43*n54 - n11*n25*n32*n43*n54 - n12*n21*n35*n43*n54 + n11*n22*n35*n43*n54 + n13*n22*n31*n45*n54 - n12*n23*n31*n45*n54 - n13*n21*n32*n45*n54 + n11*n23*n32*n45*n54 + n12*n21*n33*n45*n54 - n11*n22*n33*n45*n54 + n14*n23*n32*n41*n55 - n13*n24*n32*n41*n55 - n14*n22*n33*n41*n55 + n12*n24*n33*n41*n55 + n13*n22*n34*n41*n55 - n12*n23*n34*n41*n55 - n14*n23*n31*n42*n55 + n13*n24*n31*n42*n55 + n14*n21*n33*n42*n55 - n11*n24*n33*n42*n55 - n13*n21*n34*n42*n55 + n11*n23*n34*n42*n55 + n14*n22*n31*n43*n55 - n12*n24*n31*n43*n55 - n14*n21*n32*n43*n55 + n11*n24*n32*n43*n55 + n12*n21*n34*n43*n55 - n11*n22*n34*n43*n55 - n13*n22*n31*n44*n55 + n12*n23*n31*n44*n55 + n13*n21*n32*n44*n55 - n11*n23*n32*n44*n55 - n12*n21*n33*n44*n55 + n11*n22*n33*n44*n55); //The 1st row of the inverse natrix: i[1][1] = (n25*n34*n43*n52 - n24*n35*n43*n52 - n25*n33*n44*n52 + n23*n35*n44*n52 + n24*n33*n45*n52 - n23*n34*n45*n52 - n25*n34*n42*n53 + n24*n35*n42*n53 + n25*n32*n44*n53 - n22*n35*n44*n53 - n24*n32*n45*n53 + n22*n34*n45*n53 + n25*n33*n42*n54 - n23*n35*n42*n54 - n25*n32*n43*n54 + n22*n35*n43*n54 + n23*n32*n45*n54 - n22*n33*n45*n54 - n24*n33*n42*n55 + n23*n34*n42*n55 + n24*n32*n43*n55 - n22*n34*n43*n55 - n23*n32*n44*n55 + n22*n33*n44*n55)/det; i[1][2] = (-n15*n34*n43*n52 + n14*n35*n43*n52 + n15*n33*n44*n52 - n13*n35*n44*n52 - n14*n33*n45*n52 + n13*n34*n45*n52 + n15*n34*n42*n53 - n14*n35*n42*n53 - n15*n32*n44*n53 + n12*n35*n44*n53 + n14*n32*n45*n53 - n12*n34*n45*n53 - n15*n33*n42*n54 + n13*n35*n42*n54 + n15*n32*n43*n54 - n12*n35*n43*n54 - n13*n32*n45*n54 + n12*n33*n45*n54 + n14*n33*n42*n55 - n13*n34*n42*n55 - n14*n32*n43*n55 + n12*n34*n43*n55 + n13*n32*n44*n55 - n12*n33*n44*n55)/det; i[1][3] = (n15*n24*n43*n52 - n14*n25*n43*n52 - n15*n23*n44*n52 + n13*n25*n44*n52 + n14*n23*n45*n52 - n13*n24*n45*n52 - n15*n24*n42*n53 + n14*n25*n42*n53 + n15*n22*n44*n53 - n12*n25*n44*n53 - n14*n22*n45*n53 + n12*n24*n45*n53 + n15*n23*n42*n54 - n13*n25*n42*n54 - n15*n22*n43*n54 + n12*n25*n43*n54 + n13*n22*n45*n54 - n12*n23*n45*n54 - n14*n23*n42*n55 + n13*n24*n42*n55 + n14*n22*n43*n55 - n12*n24*n43*n55 - n13*n22*n44*n55 + n12*n23*n44*n55)/det; i[1][4] = (-n15*n24*n33*n52 + n14*n25*n33*n52 + n15*n23*n34*n52 - n13*n25*n34*n52 - n14*n23*n35*n52 + n13*n24*n35*n52 + n15*n24*n32*n53 - n14*n25*n32*n53 - n15*n22*n34*n53 + n12*n25*n34*n53 + n14*n22*n35*n53 - n12*n24*n35*n53 - n15*n23*n32*n54 + n13*n25*n32*n54 + n15*n22*n33*n54 - n12*n25*n33*n54 - n13*n22*n35*n54 + n12*n23*n35*n54 + n14*n23*n32*n55 - n13*n24*n32*n55 - n14*n22*n33*n55 + n12*n24*n33*n55 + n13*n22*n34*n55 - n12*n23*n34*n55)/det; i[1][5] = (n15*n24*n33*n42 - n14*n25*n33*n42 - n15*n23*n34*n42 + n13*n25*n34*n42 + n14*n23*n35*n42 - n13*n24*n35*n42 - n15*n24*n32*n43 + n14*n25*n32*n43 + n15*n22*n34*n43 - n12*n25*n34*n43 - n14*n22*n35*n43 + n12*n24*n35*n43 + n15*n23*n32*n44 - n13*n25*n32*n44 - n15*n22*n33*n44 + n12*n25*n33*n44 + n13*n22*n35*n44 - n12*n23*n35*n44 - n14*n23*n32*n45 + n13*n24*n32*n45 + n14*n22*n33*n45 - n12*n24*n33*n45 - n13*n22*n34*n45 + n12*n23*n34*n45)/det; K matrix is highly non-trivial, here I show part of the code to compute the Inverse of K-matrix: (>400 line of code for K-matrix only)  Computation very challenging. (A single fit can take >24 hours without optimization)

11 Fit Results! events! Sum of BW model require two adhoc  scalars NEW K-matrix fit Sum of BW’s model(BAD 899) No  scalar is needed!

12 BaBar NEW K-matrix model Cabibbo allow K*(892) High resonance K* Cabibbo suppressed K*(892)  mixing Low-mass  +  - High-mass  +  - still preliminary! events KK threshold

13 Traditional IsoBar model Cabibbo allow K*(892) High resonance K* Cabibbo suppressed K*(892)  mixing Low-mass  +  - High-mass  +  events  (1000) does not reproduce the threshold

14 Fit result: Notice: only 26 parameters floating in K-matrix model, while 38 parameters in the Sum of BW’s model(BAD 899)  A more confident fit! The total fit fraction is 115%, which is even smaller compared with the sum of BW’s model (124%)  GOOD! Floating Parameter InitialValue FinalValue +/- Error GblCorr K2*1430_DCS_amp e e-01 +/- 1.83e K2*1430_DCS_phase e e+02 +/- 6.78e K2*1430_amp e e+00 +/- 1.96e K2*1430_phase e e+01 +/- 1.20e Kst1430_DCS_amp e e-01 +/- 2.61e Kst1430_DCS_phase e e+02 +/- 5.02e Kst1430_amp e e+00 +/- 3.03e Kst1430_phase e e+02 +/- 7.51e Kst1680_amp e e+00 +/- 5.51e Kst1680_phase e e+02 +/- 3.32e Kstminus_amp e e+00 +/- 7.19e Kstminus_phase e e+02 +/- 3.94e Kstplus_amp e e-01 +/- 4.18e Kstplus_phase e e+01 +/- 1.32e beta1_amp e e+00 +/- 5.63e beta1_phase e e+02 +/- 7.81e beta2_amp e e+00 +/- 7.48e beta2_phase e e+01 +/- 1.18e beta4_amp e e+01 +/- 3.21e beta4_phase e e+00 +/- 1.45e f2_1270_amp e e-01 +/- 1.45e f2_1270_phase e e+02 +/- 1.46e fprod1_amp e e+01 +/- 1.42e fprod1_phase e e+02 +/- 9.31e omega782_amp e e-02 +/- 9.14e omega782_phase e e+02 +/- 1.25e We now print out the fit fraction The fit fraction for Rho is The fit fraction for K*(892) is The fit fraction for K*(892)_DCS is The fit fraction for omega782 is The fit fraction for f2_1270 is The fit fraction for Kst1430 is The fit fraction for K2*1430 is The fit fraction for Kst1430_DCS is The fit fraction for K2*1430_DCS is The fit fraction for Kst1680 is The fit fraction for S-wave is The total fit fraction is

15 New method: Looking at the moments! We can also perform Partial Wave expansion on the matrix elements Since the Legendre Polynormals are orthogonal, One can plot the moments and Examine the quality of the fit. The model are generated from the ToyMC using 250K MC events and the data are plot on top for direct comparison.

16 Y00 moments No need to worry about the spike around 1GeV region. It is well behaved. [It might be due do the plotting in RooFit itself] Recall, the lowest order of the spherical harmonics is just a constant, Thus this is the usual m23 mass projection plot. Clearly seen ~1GeV region is well behaved.

17 Higher order moments Y10 Y20 Y30 Y40 The model basically can reproduce the correct angular distributions!

18 Conclusion 1.In the traditional Isobar model we need to introduce adhoc  (1000) and  (500) scalar, now the problem is solved using K-matrix. 2.We still don’t get good fit for the K* resonance, no matter in traditional Isobar model, or new K-matrix model. 3.Since we have ultra high statistics, a small imperfection of the parameterization of the lineshape can show the problems. Example: The value of the Blatt-Weisskopf factor, the choice of Zemach/Helicity model 5. More importantly, we are using the mass and value of the K* from small statistics sample [Mostly before 1984], they subject to large error. 6.Since our analysis are dominated by P-wave(80% in total), thus, it is very hard to improve the chi2/dof if we don’t have precise measurement of the K*

19 End of the Presentation!