Presentation is loading. Please wait.

Presentation is loading. Please wait.

On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0.

Similar presentations


Presentation on theme: "On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0."— Presentation transcript:

1 On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0 K +

2 Looser LR cut applied LR>0.01 ( previously LR>0.04  S=151 ± 18 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005  B+  D0D0K+ B+  D0D0K+ B+  D0D0K+ B+  D0D0K+ S = 234 ± 30 S/B = 0.25 N/7 MeV EE for M bc >5.273 GeV (3  ) N/2.5 MeV M bc for  E  <15MeV (3  ) Fitting method: 2-dim M bc vs.  E unbinned likelihood fit BF=(1.25 ± 0.16 + 0.26 )  10 -3 – 0.16

3 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Dalitz plot and projections for Background: elliptical strip 6  to 10  in Mbc,  E, surrounding the signal region B +  D 0 D 0 K + For Mbc > 5.277 GeV  E  <7.5 MeV ( 1.5  signal region ) LR > 0.01 N / 50MeV M( D 0 K + ) N / 50MeV M( D 0 K + ) N / 50MeV M( D 0 D 0 ) M 2 ( D 0 K + ) M 2 ( D 0 D 0 )

4 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Background-free invariant mass distributions 2-dim M bc vs.  E fits in 2-body inv. mass bins B signal in mass bins D sJ (2700) +  (4160) reflection  (4160) + D sJ (2700) reflection  (3770) Signal / 50 MeV M( D 0 D 0 )M( D 0 K + ) Signal / 50 MeV fitted B Signal Background-free spectra are very consistent with the Dalitz-plot projections over the estimated background.

5 Estimation of the resonance contributions J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 M( D 0 K + )M( D 0 D 0 ) Signal / 25 MeVSignal / 50 MeV  (4160) in ½ helicity distr. 33.9 ± 6.1 events for total  (4160) yield: 61 ± 11 (for 2nd half helicity distr:  20% smaller eff. ) (to remove  (3770)reflection from high D 0 K + mass region) for M(D 0 D 0 )>3.85 GeV  (4160)  (3770) D sJ (2700) Lower curve in the fit: MC predicted reflection from  (4160) (normalized to 61) + non-resonant component described by 3-body MC Phase Space fitted B Signal

6 Result of fits to background-free 2-body mass spectra J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Non-resonant component yield: N NR = 37 ± 13

7 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Signal / 50 MeV M( D 0 D 0 )M( D 0 K + ) Explanation of 2-body mass spectra Contributions from quasi-two-body components: (normalized to measured yields and superimposed by adding histograms) (Shapes predicted by MC simulations generated with parameters of contributing resonances obtained in the analysis) B+   (4160) K+ B+   (3770) K+ B+  D 0 DsJ+(2700)  2 /n.d.f =20/21  2 /n.d.f =18/21  2 /n.d.f =24/22

8 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 M( D 0 D 0 )M( D 0 K + ) Signal / 50 MeV MC simulations of the Dalitz plot based on the determined strenghts of the quasi-two-body components: B+  D 0 DsJ+(2700), B+  (4160)K+ and B+  (3770)K+ non-coherent approach (  no interference) maximal constructive interference between D sJ (2700) and  (4160) maximal destructive interference between D sJ (2700) and  (4160) MC simulations for: fitted B Signal Various decay models predictions versus data None hypothesis can be rejected. It is taken into account as source of systematic error, mainly on DsJ(2700) yield and parameters (see Table). Interference between  (4160) and  (3770) is found to be negligible.

9 Acceptance corrected M(D 0 K + ) spectrum (Applied efficiency correction describes efficiency deviations along M(D 0 K + ) from average efficiency  it conserves total number of corrected events.) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 M( D 0 K + ) Eff. corrected signal / 50 MeV for M(D 0 D 0 )>3.85 GeV Acceptance-looses related systematic error on DsJ(2700) parameters

10 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005

11 Systematic uncertainty on  (4160):  no interference-effect related contribution (since  (4160) is estimated from region without interference with DsJ(2700))  negligible systematics from acceptance looses  range of fitting, fit parameterization and 3-body component yield gives N: ± 3%, M: ± 2MeV,  : ± 5MeV  from DsJ(2700) and  yields and parameters : N NR : +40% -27% Systematic uncertainty on non-resonant component:

12 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Angular distribution in the helicity frames of DsJ(2700),  (4160) and  (3770) Background-free cos  distribution obtained using 2-dim M bc vs.  E fit in each cos  bin D sJ (2700) region: 2.5<M(D 0 K + )<2.9 GeV  (4160) region: 3.95<M(D 0 D 0 )<4.25 GeV  (3770) region: M(D 0 D 0 )<3.85 GeV Eff. corrected signal  (4160) reflection D sJ (2700) reflection D sJ (2700) spin hypotheses: J=1  2 /n.d.f = 3.8/4 J=2  2 /n.d.f = 4.5/4 J=0  2 /n.d.f = 9.4/4  (4160) spin hypothesis: J=1  2 /n.d.f = 1.3/3  (3770) spin hypothesis: J=1  2 /n.d.f = 2.6/5 fitted B Signal corrected for acceptance

13 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Signal Angular distributions in various decay models versus data non-coherent approach (  no interference) maximal constructive interference between D sJ (2700) and  (4160) maximal destructive interference between D sJ (2700) and  (4160) MC simulations for: fitted B signal not corrected for acceptance The effect of maximal interferences is minor in angular distributions.

14 Estimation of contributions from other resonances J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 D sJ + (2573) spin-2 state The M( D 0 K + ) Dalitz-plot projection is fitted SELEX D sJ + (2632) state N / 2 MeV M( D 0 K + ) N / 10MeV Fitted functions: BW( D sJ (2573) )+BW( D sJ (2700) )+Linear background with BW’s parameters fixed: M( D sJ (2573) )=2573MeV  ( D sJ (2573) )=15MeV M( D sJ (2700) )=2713MeV  ( D sJ (2700) )=130MeV N( D sJ (2573) )= 1.6 ± 4.4 Fitted functions: G( D sJ (2632) )+Linear background with Gaussian parameters fixed: M( D sJ (2632) )=2632MeV  ( D sJ (2632) )=5MeV N( D sJ (2632) )= -2.3 ± 2.2

15 J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 Branching fractions of components of B +  D 0 D 0 K + B +  D 0 D 0 K + BF( B+  D 0 D sJ + (2700) ) = (0.65 ± 0.10 +0.14 –0.15)  10 -3 BF( B+   (4160)K + ) = (0.26 ± 0.05 ± 0.03)  10 -3 BF( B+   (3770)K + ) = (0.19 ± 0.03 ± 0.03)  10 -3 BF( B+  D 0 D 0 K + NR ) = (0.14 ± 0.05 +0.06 –0.04)  10 -3 90%C.L upper limits: BF( B+  D 0 D sJ + (2632) ) = 5.7  10 -6 BF( B+  D 0 D sJ + (2573) ) = 1.6  10 -4 BF( B+  Y(3940)K + ) = 1.1  10 -4


Download ppt "On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0."

Similar presentations


Ads by Google