27.03.2017 Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.

Slides:



Advertisements
Similar presentations
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
Advertisements

A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
D retention in O-covered and pure beryllium
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
9 th ITPA Meeting on Divertor/SOL physics, May 7-10, 2007, Garching Improvements to the B2 wall model: coatings and layers X. Bonnin, M. Warrier, D. Coster.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Iain D. Boyd University of Michigan Modeling of Ion Sputtering and Product Transport.
Physics of fusion power
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Examples of using Langevin equation to solve FP equation.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Member of the Helmholtz Association Detlev Reiter | Institute of Energy Research – Plasma Physics | HYDKIN: towards online hydrogen and hydride kinetics.
Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Chicago, July 22-23, 2002DARPA Simbiosys Review 1 Monte Carlo Particle Simulation of Ionic Channels Trudy van der Straaten Umberto Ravaioli Beckman Institute.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
第16回 若手科学者によるプラズマ研究会 JAEA
J.N. Brooks, A. Hassanein, T. Sizyuk, J.P. Allain
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Transfer of ITER SOLPS4.2 simulations to SOLPS5.1 X. Bonnin (CNRS-LIMHP), A. Kukushkin (ITER), D. Coster (IPP-Garching) ● ITER divertor and SOL have been.
Edge-SOL Plasma Transport Simulation for the KSTAR
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
ERO modelling of Be erosion and light emission at JET ILW D.Borodin 1, M.Stamp, A.Kirschner 1, C.Björkas 1,2, S.Brezinsek 1, J.Miettunen 3, D.Matveev 1,
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
IMP3 1 RITM – code Computation with stiff transport models presented by D.Kalupin 12th Meeting of the ITPA Transport Physics (TP) Topical Group 7-10 May.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
DSOL ITPA meetingW.Fundamenski Avila, Spain, 7-10/01/08 H-phase in ITER: what can be learned about divertor and SOL behaviour in the D and D-T phases W.
Unstructured Meshing Tools for Fusion Plasma Simulations
Recent Progress in Stellarator Optimization
Mechanisms for losses during Edge Localised modes (ELMs)
ICPs show anomalous skin depth
Numerical investigation of H-mode threshold power by using LH transition models 8th Meeting of the ITPA Confinement Database & Modeling Topical Group.
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Features of Divertor Plasmas in W7-AS
Generation of Toroidal Rotation by Gas Puffing
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
N. Asakura, K. Shimizu, K. Tobita Japan Atomic Energy Agency, Naka
Studies of impurity migration in TEXTOR by local tracer injection
Mikhail Z. Tokar and Mikhail Koltunov
Presentation transcript:

27.03.2017 Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany SEWG Meeting JET 07.07.2009

Outline Concepts and status of modeling of 27.03.2017 Outline Concepts and status of modeling of PWI with DIVIMP (Work in progress!) Limits and extensions of DIVIMP Standard and extended grids Modeling of material mixing Status of Be / C calculations for JET Short term plans

27.03.2017 What is DIVIMP ? DIVIMP : "DIVertor IMPurities" developed by P.Stangeby / D. Elder (1992) Designed for impurity transport in divertor and SOL of tokamaks Simulates (erosion) and impurity transport in plasma boundary Monte Carlo modeling ... of particle trajectories through plasma background based on forces on impurity atoms ... of reactions in the plasma (ionisation, neutralisation, chemistry)

What is DIVIMP ? Limitations Improvements 27.03.2017 What is DIVIMP ? Limitations Improvements 2D Model (poloidal X-section) -----  Toroidal symmetry ! Static plasma background -----  Impurities are traces ! Outer most flux surface from target to target Extended grids  Gaps between grid and wall (S. Lisgo) Impurity generation FluxCalc/ProbCalc  No sputtering by multiple plasma species (K. Schmid)  No sputtering at walls (only target) Plasma facing wall ERODEPDIF  No multiple wall elements (K. Schmid)  No wall material mixing  No T-dep. effects (Sublimation...)  No re-deposition

What is DIVIMP ? Limitations Improvements 27.03.2017 What is DIVIMP ? Limitations Improvements 2D Model (poloidal X-section) -----  Toroidal symmetry ! Static plasma background -----  Impurities are traces ! Outer most flux surface from target to target Extended grids  Gaps between grid and wall (S. Lisgo) Impurity generation FluxCalc/ProbCalc  No sputtering by multiple plasma species (K. Schmid)  No sputtering at walls (only target) Plasma facing wall ERODEPDIF  No multiple wall elements (K. Schmid)  No wall material mixing  No T-dep. effects (Sublimation...)  No re-deposition

Conceptual approach Codes for "plasma side" Codes for "material side" properties databases OEDGE (OSM) SOLPS (B2+Eirene) CARRE, recent codes Codes for "plasma side" DIVIMP ERODEPDIF / Analytical models Codes for "material side" SDTrim FluxCalc ProbCalc

Conceptual approach Materials properties databases OEDGE (OSM) SOLPS (B2+Eirene) CARRE, recent codes Grid Background plasma DIVIMP Diffusion Sublimation Expected results: * Steady state wall concentrations & erosion fluxes * Plasma impurity concentrations Re-deposition matrix for each element ERODEPDIF / Analytical models Phys. sputtering Impurity generation SDTrim FluxCalc ProbCalc

Conceptual approach Materials properties databases OEDGE (OSM) SOLPS (B2+Eirene) CARRE, recent codes Grid Background plasma DIVIMP Diffusion Sublimation Re-deposition matrix for each element ERODEPDIF / Analytical models Phys. sputtering Impurity generation SDTrim FluxCalc ProbCalc

Conceptual approach Materials properties databases OEDGE (OSM) SOLPS (B2+Eirene) CARRE, recent codes Grid Background plasma DIVIMP Diffusion Sublimation Re-deposition matrix for each element ERODEPDIF / Analytical models Phys. sputtering Impurity generation SDTrim FluxCalc ProbCalc

Extended grid (EG) JET SG (Standard grid) JET EG [1] (Extended grid) 27.03.2017 Extended grid (EG) JET SG (Standard grid) JET EG [1] (Extended grid) [1] By S. Lisgo

27.03.2017 Extended grid (EG)

Conceptual approach Materials properties databases OEDGE (SOL22 option) SOLPS (B2+Eirene) CARRE, recent codes Grid Background plasma DIVIMP Diffusion Sublimation Re-deposition matrix for each element ERODEPDIF / Analytical models Phys. sputtering Impurity generation SDTrim FluxCalc ProbCalc

ERODEPDIF Treat komplex plasma-wall interactions and material evolution in a simplified way ERODEPDIF [2]: Looks iteratively for a flux balance solution No time evolution [2] K. Schmid, Nucl. Fusion 48 (2008) p. 105004

ERODEPDIF Treat komplex plasma-wall interactions and material evolution in a simplified way ERODEPDIF [2]: Looks iteratively for a flux balance solution No time evolution Be-evaporation JET experimental data [3]: Integrated Be flux from e.g. outer divertor from Be II (527nm) wall gap  L-mode high  L-mode low  H-mode low [2] K. Schmid, Nucl. Fusion 48 (2008) p. 105004 [3] K. Krieger et al, J. Nucl. Mat. 390–391 (2009) p. 110

New analytical model Treat komplex plasma-wall interactions and material evolution in a simplified way Newly developed analytical model [4]: Reaction zone Bulk Background plasma [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

New analytical model Treat komplex plasma-wall interactions and material evolution in a simplified way Net deposition: Layer growth BGP D, He, Ar Reaction zone Be, C Bulk, z.B. C Be, C, D, He, Ar C Be, C Net erosion * Constant thickness * Variable composition (but homogeneous distribution) * Variable thickness * Constant composition [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

Applicable to “simple” New analytical model Treat komplex plasma-wall interactions and material evolution in a simplified way Net deposition: Layer growth BGP D, He, Ar Reaction zone Be, C Bulk, z.B. C Be, C, D, He, Ar C Be, C Net erosion Applicable to “simple” systems like Be & C YPartial ~ C*YTotal * Constant thickness * Variable composition (but homogeneous distribution) * Variable thickness * Constant composition [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

New analytical model Reaction Bulk zone Plasma Bulk First wall is subdivided into n-tiles Each tile receives a flux due to erosion & re-deposition from other tiles Plasma transport is characterized by a re-deposition matrix:  Flux of material m on tile i: Solved as a 4n coupled differential equation system in Mathematica RESULT: Time evolution of the first wall ! [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

Prove Of Principle of solver First (simple) test case: 7 Wall tiles Constant D plasma flux in the range of 1022 m-2 s-1 Be & C erosion yields in % range Very simplified plasma transport (exp. distance decay) Initially pure C #4 eroded Be buried by re-dep. C # 4 Initially pure Be Be re-deposition

Conceptual approach Materials properties databases OEDGE (SOL22 option) SOLPS (B2+Eirene) CARRE, recent codes Grid Background plasma DIVIMP Diffusion Sublimation Re-deposition matrix for each element ERODEPDIF / Analytical models Phys. sputtering Impurity generation SDTrim FluxCalc ProbCalc

Concept: Re-deposition matrix by DIVIMP static BGP Lauch flux of Be impurity ions and map points of re-deposition (Charge resolved) static BGP Bin  Re-deposition matrix

Re-deposition matrix (JET SG)

Re-deposition matrix (JET SG) Promt re-deposition ... ... ...

Re-deposition matrix (JET SG)

Re-deposition matrix (JET SG) Most Be is re-deposited at the inner taget

Short term plans 1) Get EG and OEDGE running for both JET and ITER Experimental data (K. Krieger) Validation JET SG + EG (Partly done) Be + C Background plasma: OEDGE, Experimental + Extrapolation ITER SG (Previously done) + EG Be migration (+ W Divertor) Background plasma: OEDGE Extrapolation 1) Get EG and OEDGE running for both JET and ITER 2) Obtain re-deposition matrices for JET: Be, C ITER: Be, W 3) Compare SG and EG based calculations 4) Investigate the steady state wall compositions and impurity plasma concentrations

What is DIVIMP ? Modelling framework: SOLPS 4.0 (5.0) CARRE (SONNET) 27.03.2017 What is DIVIMP ? Modelling framework: SOLPS 4.0 (5.0) CARRE (SONNET) 2D Grid generator: Plasma current Magnetic field B2 (B2.5) Fluid code B. Braams, NY EIRENE (MC) Neutral transport (Reiter, FZJ) OEDGE Onion skin model EIRENE (MC) Neutral transport (Reiter, FZJ) DIVIMP (MC): Impurity transport (Stangeby, Toronto) CARRE: Spulen, * Plasmastrom  Magnetfeld  Plasmastrom *  Magnetfeld  Cut with wall  Gitter dass die magnet. Flussflächen abbildet B2/Eirene : Grid  NeutralTeilchen  Ionisation  B2 fluid  z.B.Collision mit Wand Neutralisation  Generation von neuen Neutralen Eirene: Neutralteilchentransport  Ionisation  ... Selbstkonsistente Lösung unter Energie und Massenerhalt EDGE2D NIMBUS

? Grid Standard grid (SG) directly from B2/Eirene: 27.03.2017 Grid Standard grid (SG) directly from B2/Eirene: + PWI  Interpolation of plasma parameters to the wall (lack of physics: linear) Overestimation of flux into divertor ! Grid extension to match the vessel geometry, so far manually customized ? Free gird (w/o cut with neutral wall) is modified by DIVIMP (requires a lot of manual input, automatic generation in progress)

Standard grids : ITER (Divertor) 27.03.2017 Standard grids : ITER (Divertor) Unrolled data structure: Background plasma SOL Flux Surfaces Divertor Separatrix Divertor Core Plasma Separatrix Core Plasma Flux Surfaces SOL Divertor Divertor

Standard grids : ITER (Divertor) 27.03.2017 Standard grids : ITER (Divertor) Core Plasma SOL Flux Surfaces Separatrix Divertor Unrolled data structure (B2-EIRENE): Background plasma

Impurity transport Anomal diffusion ┴ B Classic transport || B 27.03.2017 Impurity transport Reflection, Deposition Wall / Divertor: Ionisation Recombination Thermalisation Anomal diffusion ┴ B Classic transport || B (gyro center motion) Friction force Thermal gradient force Electric force

What is FluxCalc / ProbCalc ? Problem: Impurity generation by impurities (Self sputtering of W !) Background plasma Grid Ion fluxes at grid edge CX-Flux at grid edge Neutral wall For every wall element: Te, Ti Ion flux (D, He, C) CX-flux (Energy & angle resolved) FluxCalc SDTrim (parameterized) ProbCalc Sputteryields For every wall element: Erosion flux Absolute wall launch probabilities of impurities ERODEPDIV + Redeposiotionmatrix

Summary Latest DIVIMP version (6 revision 41) working Modifications for coupling with ERODEPDIF Ability to calculate re-distribution matrices (Be for JET SG) Analytical solution for Be/C JET cases