Hybrid Logics and Ontology Languages

Slides:



Advertisements
Similar presentations
Charting the Potential of Description Logic for the Generation of Referring Expression SELLC, Guangzhou, Dec Yuan Ren, Kees van Deemter and Jeff.
Advertisements

The Semantic Web: Ontologies and OWL Ian Horrocks and Alan Rector Summary.
Description Logic Based Ontology Languages Ian Horrocks Information Systems Group Oxford University Computing Laboratory.
Ontologies and Databases Ian Horrocks Information Systems Group Oxford University Computing Laboratory.
1 ISWC-2003 Sanibel Island, FL IMG, University of Manchester Jeff Z. Pan 1 and Ian Horrocks 1,2 {pan | 1 Information Management.
Three Theses of Representation in the Semantic Web
Query Answering based on Standard and Extended Modal Logic Evgeny Zolin The University of Manchester
Modal Logic with Variable Modalities & its Applications to Querying Knowledge Bases Evgeny Zolin The University of Manchester
CS848: Topics in Databases: Foundations of Query Optimization Topics covered  Introduction to description logic: Single column QL  The ALC family of.
Knowledge Representation and Reasoning using Description Logic Presenter Shamima Mithun.
OWL - DL. DL System A knowledge base (KB) comprises two components, the TBox and the ABox The TBox introduces the terminology, i.e., the vocabulary of.
Query Answering for OWL-DL with Rules Boris Motik Ulrike Sattler Rudi Studer.
Comparative Succinctness of KR Formalisms Paolo Liberatore.
An Introduction to Description Logics
An Introduction to RDF(S) and a Quick Tour of OWL
Computing & Information Sciences Kansas State University Lecture 16 of 42 CIS 530 / 730 Artificial Intelligence Lecture 16 of 42 Knowledge Engineering.
SIG2: Ontology Language Standards WebOnt Briefing Ian Horrocks University of Manchester, UK.
Combining the strengths of UMIST and The Victoria University of Manchester A Tableaux Decision Procedure for SHOIQ Ian Horrocks and Ulrike Sattler University.
CPSC 322, Lecture 19Slide 1 Propositional Logic Intro, Syntax Computer Science cpsc322, Lecture 19 (Textbook Chpt ) February, 23, 2009.
1 Introduction to Computability Theory Lecture12: Decidable Languages Prof. Amos Israeli.
Ontologies and the Semantic Web
OWL: A Description Logic Based Ontology Language Ian Horrocks Information Management Group School of Computer Science University of Manchester.
Description Logics. Outline Knowledge Representation Knowledge Representation Ontology Language Ontology Language Description Logics Description Logics.
Semantic Web The Story So Far Ian Horrocks Oxford University Computing Laboratory.
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
DL systems DL and the Web Ilie Savga
Part 6: Description Logics. Languages for Ontologies In early days of Artificial Intelligence, ontologies were represented resorting to non-logic-based.
Basics of Reasoning in Description Logics
DLs and Ontology Languages. ’s OWL (like OIL & DAML+OIL) based on a DL –OWL DL effectively a “Web-friendly” syntax for SHOIN i.e., ALC extended with transitive.
Description Logics Franz Baader, Ian Horrocks, Ulrike Sattler Presented By Jahan Ara Arju Muhammad Nazmus Sakib CSCE
An Introduction to Description Logics. What Are Description Logics? A family of logic based Knowledge Representation formalisms –Descendants of semantic.
Tableau Algorithm.
Computing & Information Sciences Kansas State University Wednesday, 08 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 08 October.
CSE-291: Ontologies in Data & Process Integration Department of Computer Science & Engineering University of California, San Diego CSE-291: Ontologies.
Notes on DL Reasoning Shawn Bowers April, 2004.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
Query Answering Based on the Modal Correspondence Theory Evgeny Zolin University of Manchester Manchester, UK
Building an Ontology of Semantic Web Techniques Utilizing RDF Schema and OWL 2.0 in Protégé 4.0 Presented by: Naveed Javed Nimat Umar Syed.
LDK R Logics for Data and Knowledge Representation ClassL (part 3): Reasoning with an ABox 1.
Presented by:- Somya Gupta( ) Akshat Malu ( ) Swapnil Ghuge ( ) Franz Baader, Ian Horrocks, and Ulrike Sattler.
Topics in artificial intelligence 1/1 Dr hab. inż. Joanna Józefowska, prof. PP Reasoning and search techniques.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
An Introduction to Description Logics (chapter 2 of DLHB)
Semantic web course – Computer Engineering Department – Sharif Univ. of Technology – Fall Description Logics: Logic foundation of Semantic Web Semantic.
1 How to decide Query Containment under Constraints using a Description Logic Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies presented.
LDK R Logics for Data and Knowledge Representation Description Logics (ALC)
More on Description Logic(s) Frederick Maier. Note Added 10/27/03 So, there are a few errors that will be obvious to some: So, there are a few errors.
Artificial Intelligence 2004 Ontology
OilEd An Introduction to OilEd Sean Bechhofer. Topics we will discuss Basic OilEd use –Defining Classes, Properties and Individuals in an Ontology –This.
Organization of the Lab Three meetings:  today: general introduction, first steps in Protégé OWL  November 19: second part of tutorial  December 3:
DL Overview Second Pass Ming Fang 06/19/2009. Outlines  Description Languages  Knowledge Representation in DL  Logical Inference in DL.
LDK R Logics for Data and Knowledge Representation ClassL (Propositional Description Logic with Individuals) 1.
1 First order theories (Chapter 1, Sections 1.4 – 1.5) From the slides for the book “Decision procedures” by D.Kroening and O.Strichman.
Description Logics Dr. Alexandra I. Cristea. Description Logics Description Logics allow formal concept definitions that can be reasoned about to be expressed.
ece 627 intelligent web: ontology and beyond
CSE-291: Ontologies in Data Integration Department of Computer Science & Engineering University of California, San Diego CSE-291: Ontologies in Data Integration.
Charting the Potential of Description Logic for the Generation of Referring Expression SELLC, Guangzhou, Dec Yuan Ren, Kees van Deemter and Jeff.
Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2011 Adina Magda Florea
Of 29 lecture 15: description logic - introduction.
CSE-291: Ontologies in Data Integration Department of Computer Science & Engineering University of California, San Diego CSE-291: Ontologies in Data Integration.
LDK R Logics for Data and Knowledge Representation Description Logics: family of languages.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Description Logic Reasoning
ece 720 intelligent web: ontology and beyond
Description Logic: A Formal Foundation for Languages and Tools
Ontologies and Databases
Description Logics.
Logics for Data and Knowledge Representation
Description logics (book, page 456)
CIS Monthly Seminar – Software Engineering and Knowledge Management IS Enterprise Modeling Ontologies Presenter : Dr. S. Vasanthapriyan Senior Lecturer.
Presentation transcript:

Hybrid Logics and Ontology Languages Ian Horrocks <horrocks@cs.man.ac.uk> Information Management Group School of Computer Science University of Manchester

Talk Outline Introduction to Description Logics Ontologies and OWL OWL ontology language Ontology applications Nominals in Ontology Languages Ontology Reasoning Tableaux algorithms Reasoning with nominals Conjunctive Query Answering Using binders and state variables Summary

Introduction to Description Logics

What Are Description Logics? A family of logic based Knowledge Representation formalisms Descendants of semantic networks and KL-ONE Describe domain in terms of concepts (classes), roles (properties, relationships) and individuals Distinguished by: Formal semantics (typically model theoretic) Decidable fragments of FOL (often contained in C2) Closely related to Propositional Modal, Hybrid & Dynamic Logics Closely related to Guarded Fragment Provision of inference services Decision procedures for key problems (satisfiability, subsumption, etc) Implemented systems (highly optimised)

DL Basics Concepts (formulae) Roles (modalities) E.g., Person, Doctor, HappyParent, (Doctor t Lawyer) Roles (modalities) E.g., hasChild, loves Individuals (nominals) E.g., John, Mary, Italy Operators (for forming concepts and roles) restricted so that: Satisfiability/subsumption is decidable and, if possible, of low complexity No need for explicit use of variables Restricted form of 9 and 8 (direct correspondence with hii and [i]) Features such as counting (graded modalities) succinctly expressed

The DL Family (1) Smallest propositionally closed DL is ALC (equivalent to K(m)) Concepts constructed using booleans u, t, :, plus restricted quantifiers 9, 8 Only atomic roles E.g., Person all of whose children are either Doctors or have a child who is a Doctor: Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family (1) Smallest propositionally closed DL is ALC (equivalent to K(m)) Concepts constructed using booleans u, t, :, plus restricted quantifiers 9, 8 Only atomic roles E.g., Person all of whose children are either Doctors or have a child who is a Doctor: Person Æ [hasChild](Doctor Ç hhasChildiDoctor)

The DL Family (2) S often used for ALC extended with transitive roles i.e., the union of K(m) and K4(m) Additional letters indicate other extensions, e.g.: H for role hierarchy (e.g., hasDaughter v hasChild) O for nominals/singleton classes (e.g., {Italy}) I for inverse roles (converse modalities) Q for qualified number restrictions (graded modalities, e.g., hiim) N for number restrictions (graded modalities, e.g., hiim>) S + role hierarchy (H) + nominals (O) + inverse (I) + NR (N) = SHOIN SHOIN is the basis for W3C’s OWL Web Ontology Language

DL Knowledge Base A TBox is a set of “schema” axioms (sentences), e.g.: {Doctor v Person, HappyParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor)} i.e., a background theory (a set of non-logical axioms) An ABox is a set of “data” axioms (ground facts), e.g.: {John:HappyParent, John hasChild Mary} i.e., non-logical axioms including (restricted) use of nominals

DL Knowledge Base A TBox is a set of “schema” axioms (sentences), e.g.: {Doctor ! Person, HappyParent $ Person Æ [hasChild](Doctor Ç hhasChildiDoctor)} i.e., a background theory (a set of non-logical axioms) An ABox is a set of “data” axioms (ground facts), e.g.: {John ! HappyParent, John ! hhasChildiMary} i.e., non-logical axioms including (restricted) use of nominals A Knowledge Base (KB) is just a TBox plus an Abox

Ontologies and OWL

The Web Ontology Language OWL Semantic Web led to requirement for a “web ontology language” set up Web-Ontology (WebOnt) Working Group WebOnt developed OWL language OWL based on earlier languages OIL and DAML+OIL OWL now a W3C recommendation (i.e., a standard) OIL, DAML+OIL and OWL based on Description Logics OWL effectively a “Web-friendly” syntax for SHOIN

OWL RDF/XML Exchange Syntax E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor): <owl:Class> <owl:intersectionOf rdf:parseType=" collection"> <owl:Class rdf:about="#Person"/> <owl:Restriction> <owl:onProperty rdf:resource="#hasChild"/> <owl:allValuesFrom> <owl:unionOf rdf:parseType=" collection"> <owl:Class rdf:about="#Doctor"/> <owl:someValuesFrom rdf:resource="#Doctor"/> </owl:Restriction> </owl:unionOf> </owl:allValuesFrom> </owl:intersectionOf> </owl:Class>

Class/Concept Constructors C is a concept (class); P is a role (property); xi is an individual/nominal XMLS datatypes as well as classes in 8P.C and 9P.C Restricted form of DL concrete domains

Ontology Axioms OWL ontology equivalent to DL KB (Tbox + Abox)

Why (Description) Logic? OWL exploits results of 15+ years of DL research Well defined (model theoretic) semantics

Why (Description) Logic? OWL exploits results of 15+ years of DL research Well defined (model theoretic) semantics Formal properties well understood (complexity, decidability) I can’t find an efficient algorithm, but neither can all these famous people. [Garey & Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.]

Why (Description) Logic? OWL exploits results of 15+ years of DL research Well defined (model theoretic) semantics Formal properties well understood (complexity, decidability) Known reasoning algorithms

Why (Description) Logic? OWL exploits results of 15+ years of DL research Well defined (model theoretic) semantics Formal properties well understood (complexity, decidability) Known reasoning algorithms Implemented systems (highly optimised) Pellet

Why (Description) Logic? Foundational research was crucial to design of OWL Informed Working Group decisions at every stage, e.g.: “Why not extend the language with feature x, which is clearly harmless?” “Adding x would lead to undecidability - see proof in […]” Heath-Robinson approach to language design; big tree is undecidability.

Applications of Ontologies e-Science, e.g., Bioinformatics Open Biomedical Ontologies Consortium (GO, MGED) Used e.g., for “in silico” investigations relating theory and data E.g., relating data on phosphatases to (model of) biological knowledge Graphic showing protein functional domains (sequences of amino acids?); the identifying characteristics of different proteins.

Applications of Ontologies Medicine Building/maintaining terminologies such as Snomed, NCI & Galen Frontal Lobe Temporal Lobe Parietal Lobe Occipital Lobe Central Sulcus Lateral Sulcus - Example from project to (semi-) automate the annotation of MRI images of the brain - FMA derived ontology used to capture knowledge of brain anatomy

Applications of Ontologies Organising complex and semi-structured information UN-FAO, NASA, Ordnance Survey, General Motors, Lockheed Martin, …

Nominals in Ontologies Used in extensionally defined classes e.g., class EU might be defined as {Austria, …, UnitedKingdom} Written in OWL as oneOf(Austria … UnitedKingdom) Equivalent to a disjunction of nominals: Austria Ç … Ç UnitedKingdom Allows inferences such as: EU contains 25 countries (assuming UNA/axioms) If in the EU and not in oneOf(Austria … Sweden) ! in UnitedKingdom Used in extended OWL Abox axioms e.g., individual(Jim value(friend individual(value(friend Jane)))) Equivalent to {Jim} v 9 friend.(9 friend.{Jane}) i.e., Jim ! hfriendi(hfriendiJane) Widely used in ontologies e.g. in Wine ontology used for colours, grape types, regions, etc.

Ontology Reasoning: How do we do it?

Using Standard DL Techniques Key reasoning tasks reducible to KB (un)satisfiability E.g., C v D w.r.t. KB K iff K [ {x:(C u :D)} is not satisfiable State of the art DL systems typically use (highly optimised) tableaux algorithms to decide satisfiability (consistency) of KB Tableaux algorithms work by trying to construct a concrete example (model) consistent with KB axioms: Start from ground facts (ABox axioms) Explicate structure implied by complex concepts and TBox axioms Syntactic decomposition using tableaux expansion rules Infer constraints on (elements of) model

Tableaux Reasoning (1) E.g., KB: {HappyParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor), John:HappyParent, John hasChild Mary, Mary:: Doctor Wendy hasChild Mary, Wendy marriedTo John} Person 8hasChild.(Doctor t 9hasChild.Doctor)

Tableaux Reasoning (2) Tableau rules correspond to constructors in logic (u, 9 etc) E.g., John:(Person u Doctor) --! John:Person and John:Doctor Stop when no more rules applicable or clash occurs Clash is an obvious contradiction, e.g., A(x), :A(x) Some rules are nondeterministic (e.g., t, 6) In practice, this means search Cycle check (blocking) often needed to ensure termination E.g., KB: {Person v 9hasParent.Person, John:Person}

Tableaux Reasoning (3) In general, (representation of) model consists of: Named individuals forming arbitrary directed graph Trees of anonymous individuals rooted in named individuals

Decision Procedures Algorithms are decision procedures, i.e., KB is satisfiable iff rules can be applied such that fully expanded clash free graph is constructed: Sound Given a fully expanded and clash-free graph, we can trivially construct a model Complete Given a model, we can use it to guide application of non-deterministic rules in such a way as to construct a clash-free graph Terminating Bounds on number of named individuals, out-degree of trees (rule applications per node), and depth of trees (blocking) Crucially depends on (some form of) tree model property

Reasoning with Nominals: A Tableaux Algorithm for SHOIQ

Recall Motivation for OWL Design Exploit results of DL research: … Known tableaux decision procedures and implemented systems But not for SHOIN (until recently)! So why is/was SHOIN so hard?

SHIQ is Already Tricky Does not have finite model property, e.g.: {ITN v 61 edge– u 9edge.ITN, R:(ITN u 60 edge–)} Double blocking Block interpreted as infinite repetition

SHIQ is Already Tricky Does not have finite model property, e.g.: {ITN v 61 edge– u 9edge.ITN, R:(ITN u 60 edge–)} Double blocking Block interpreted as infinite repetition Termination problem due to > and 6, e.g.: {John:9hasChild.Doctor u >2 hasChild.Lawyer u 62 hasChild} Add inequalities between nodes generated by > rule Clash if 6 rule only applicable to  nodes

SHOIQ: Loss (almost) of TMP Interactions between O, I, and Q lead to new termination problems Anonymous branches can loop back to named individuals (O) E.g., 9r.{Mary} Number restrictions (Q) on incoming edges (I) lead to non-tree structure E.g., Mary:61 r– Result is anonymous nodes that act like named individual nodes Blocking sequence cannot include such nodes Don’t know how to build a model from a graph including such a block

Intuition: Nominal Nodes Nominal nodes (N-nodes) include: Named individual nodes Nodes affected by number restriction via outgoing edge to N-node Blocking sequence cannot include N-nodes Bound on number of N-nodes Must initially have been on a path between named individual nodes Length of such paths bounded by blocking Number of incoming edges at an N-node is limited by number restrictions

Generate & Merge Problem is Back! E.g., KB: {VMP ´ Person u 9loves.{Mary} u 9hasFriend.VMP, John:9hasFriend.VMP Mary:62 loves–} Blocking prevented by N-nodes Repeated generation and merging of nodes leads to non-termination

Intuition: Guess Exact Cardinality New Ro?-rule guesses exact cardinality constraint on N-nodes {VMP ´ Person u 9loves.{Mary} u 9hasFriend.VMP, John:9hasFriend.VMP Mary:62 loves–} Inequality between resulting N-nodes fixes generate & merge problem Introduces new source of non-determinism But only if nominals used in a “nasty” way Usage in ontologies typically “harmless” Otherwise behaves as for SHIQ

Conjunctive Query Answering: Using binders (maybe)

Conjunctive Queries Want to query KB using DB style conjunctive query language e.g., hx,zi à Winehxi Æ drunkWithhx,yi Æ Dishhyi Æ fromRegionhy,zi How to answer such queries? Reduce to boolean queries w.r.t. candidate answer tuples e.g., hi à WinehChiantii Æ drunkWithhChianti,yi Æ Dishhyi Æ fromRegionhy,Venetoi Transform query into concept Cq by “rolling up” e.g., Cq = {Chianti} u 9 drunkWith.(Dish u 9 fromRegion.{Veneto}) such that query can be reduced to KB satisfiability test hT,Ai ² q iff hT [ {> v :Cq},Ai is not satisfiable

Rolling Up (1) View query as a labeled graph and “roll up” from leaves to root e.g., hi à Ahwi Æ Rhw,xi Æ Bhxi Æ Phx,yi Æ Chyi Æ Shx,zi Æ Chyi A u 9R.(B u 9P.C u 9S.D) B u 9P.C u 9S.D B u 9P.C

Cyclical Queries Problems arise when trying to roll up cyclical queries e.g., hi à Ahwi Æ Rhw,xi Æ Bhxi Æ Phx,yi Æ Chyi Æ Shx,zi Æ Chyi Æ Rhy,zi

Rolling Up with Binders (1) Problem could be solved by extending DL with binder: e.g., hi à Ahwi Æ Rhw,xi Æ Bhxi Æ Phx,yi Æ Chyi Æ Shx,zi Æ Chyi Æ Rhy,zi A u 9R.(x.(B u 9S.(D u 9R-.(C u 9P-..x)))) D u 9R-.(C u 9P-..x) x.B C u 9P-..x x.B x.(B u 9S.(D u 9R-.(C u 9P-..x)))

Rolling Up with Binders (2) Unfortunately, already known that ALC + binder is undecidable [Blackburn and Seligman] But, when used in rolling up, only occurs in very restricted form: Only intersection, existential and positive state variables and when negated (in sat test), only union, universal and negated vars in form 8R.:x Now known that SHIQ conjunctive query answering is decidable Binders would potentially lead to a more “practical” algorithm But not trivial to extend tableaux algorithm to SHIQ + binder Blocking is difficult because binder introduces new concepts Decidability of SHOIQ conjunctive query answering still open Although believe we now have a solution

Summary DLs are a family of logic based KR formalisms Describe domain in terms of concepts, roles and individuals Closely related to Modal & Hybrid Logics DLs are the basis for ontology languages such as OWL Nominals widely used in ontologies Reasoning with SHOIQ is tricky, but now reasonalby well understood Binders potentially useful for conjunctive query answering Allow for rolling up of arbitrary queries Required extensions known to be decidable But reasoning with extended languages still an open problem

Acknowledgements Thanks to: Birte Glimm Uli Sattler

Resources Slides from this talk FaCT++ system (open source) Protégé http://www.cs.man.ac.uk/~horrocks/Slides/HyLo06.ppt FaCT++ system (open source) http://owl.man.ac.uk/factplusplus/ Protégé http://protege.stanford.edu/plugins/owl/ W3C Web-Ontology (WebOnt) working group (OWL) http://www.w3.org/2001/sw/WebOnt/ DL Handbook, Cambridge University Press http://books.cambridge.org/0521781760.htm

Thank you for listening Any questions?