B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Vortex-Nernst signal and extended phase diagram of cuprates Yayu Wang, Z. A. Xu, N.P.O (Princeton) T. Kakeshita, S. Uchida (U. Tokyo) S. Ono and Y. Ando.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Pairing glue antiferromagnetism, polaron pseudogap High-Tc.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing Newton Institute, Cambridge Mott Physics, Sign Structure, and High-Tc.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Superconductivity in Zigzag CuO Chains
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Competing Orders: speculations and interpretations Leon Balents, UCSB Physics Three questions: - Are COs unavoidable in these materials? - Are COs responsible.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Gordon Conference 2007 Superconductivity near the Mott transition: what can we learn from plaquette DMFT? K Haule Rutgers University.
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Quasiparticle scattering and local density of states in graphene Cristina Bena (SPhT, CEA-Saclay) with Steve Kivelson (Stanford) C. Bena et S. Kivelson,
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
VUV14, July 23, 2004 Electronic structures of Ca induced one-dimensional reconstructions on a Si(111) surface Kazuyuki Sakamoto Dept. Phys., Tohoku University,
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Symmetry breaking in the Pseudogap state and Fluctuations about it Schematic Universal phase diagram of high-T c superconductors MarginalFermi-liquid Fermi.
Zheng-Yu Weng IAS, Tsinghua University
Fig.1. Schematic view of the Photoemission (top) and Inverse Photoemission (bottom) processes. Fig.2. PES and IPES spectra of polycrystalline silver, plotted.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
FIELD THEORETICAL RG FOR A 2D FERMI SURFACE
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Mott Transition and Superconductivity in Two-dimensional
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
ARPES studies of unconventional
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
ARPES studies of cuprates
Giant Superconducting Proximity Effect in Composite Systems Chun Chen and Yan Chen Dept. of Physics and Lab of Advanced Materials, Fudan University,
Search of a Quantum Critical Point in High Tc Superconductors
Experimental Evidences on Spin-Charge Separation
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Phase diagram of s-wave SC Introduction
R. L. Greene Electron-doped Cuprates University of Maryland
Alvaro ROJO-BRAVO LPTMS URM 8626, Université Paris-Sud, Orsay, France
Tony Leggett Department of Physics
ARPES study of metal-insulator transition in Sr2IrO4
Presentation transcript:

B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Spectroscopic signatures of two energy scales in superconducting underdoped cuprates B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) In collaboration with: Elena Bascones (ICMM-CSIC)

Outline Conventional superconducting phase in high Tc superconductors? Experimental evidence in ARPES and Raman of deviation from d-wave BCS in superconducting underdoped cuprates: two-scales Introduction to the phenomenological model proposed to describe the pseudogap (Yang, Rice & Zhang ‘06) Results on how two energy scales appear in underdoped superconducting cuprates in ARPES, autocorrelated ARPES and Raman.

Pseudogap State: Fermi arcs and Nodal-Antinodal Dichotomy Antinodal region Nodal region El pseudogap se ve en todos los cupratos y experimentalmente lo que se ve es una reduccion de la densidad de estados o una reduccion En los procesos de scattering. ARPES NODAL ANTINODAL Shen et al, Science 307, 901 (2005)

Superconducting phase Conventional BCS d-wave superconductivity? Recently nodal-antinodal dichotomy has also been observed in underdoped It is a condensate of Cooper pairs. Experimentos de fotoemisión revelan picos en el espectro de excitaciones indicando la presencia de Cuasipartículas que predice la teoría BCS. Simetría d-wave no trivial. Sin embargo experimentos de Raman y ARPES muy recientes Nos dicen que parece que hay dos escalas una nodal y otra antinodal en la zona superconductora infradopada.

Scenarios for the High-Tc cuprates QCP at xc Standard BCS La superconductividad es una inestabilidad del estado normal y por lo tanto para entender el origen de la superconductividad necesitamos Entender el estado normal del que surge. RVB: el pseudogap (J-tx) se forma cuando los spines forman singletes y este spin gap reduce el Escattering entre los huecos que da lugar a un pico de Drude mas estrecho en la fase del pseudogap. Pares de Cooper se forman En T* y coherencia a Tc. xc Pseudogap and superconductivity have a common origin Pseudogap and superconductivity are different instabilities which compete

d-wave BCS superconductor:

d-wave BCS: A single energy scale Ds Gap depends linearly on cos(2f): V-shape coskx-cosky Nodal velocity vD=1/2(dDs(f)/df)|f=p/4=Ds Antinodal gap, Dmax=Ds(f=p/2)=Ds

ARPES deviations from d-wave BCS in Underdoped SC Cuprates U-shape K. Tanaka et al, Science 314, 1910 (2006) Two scales in Energy spectrum with underdoping vD decreases Dmax increases

Two energy scales in Raman Spectrum in the SC State of Underdoped Cuprates Energy scale of peak in antinodal (nodal) region increases (decreases) with decreasing doping in underdoped cuprates. Pair breaking peak intensity decreases with underdoping in antinodal region (opposite behavior expected from increasing energy scale) Le Tacon et al, Nat. Phys. 2, 537 (2006)

Evolution of Nodal and Antinodal energy scales with x Le Tacon et al, Nat. Phys. 2, 537 (2006)

Evolution of Nodal and Antinodal energy scales with x 2 2 Doping BV and E. Bascones PRl 98, 227002 (2007) Also able to reproduce the decrease in intensity of antinodal Raman peak with underdoping

Phenomenological model for doped spin liquid+QCP to describe the pseudogap state Coherent + Incoherent part Only diagonal /2 En cupratos el mayor reto es combinar teoría (no perturbativas) con experimento porque al no saber que teoría se debe usar es dificil interpretar el experimento. Es necesario una teoría fenomenológica consistente con todos los experimentos, como el gap en BCS. Yang, Rice,Zhang PRB 73, 174501 (2006) QCP

“Gapless Fermi arcs” X=0.05 X=0.14 X=0.20 E E E ky ky ky kx kx kx coskx-cosky coskx-cosky coskx-cosky

Doped spin liquid in the SC State X=0.10 Pseudogap physics (and scale DR) present, if x<xc, in SC state X=0.14 X=0.18 X=0.20 Four bands with energies ±E± for x<xc X=0.25

Two scales in the Raman spectra BV and E. Bascones PRl 98, 227002 (2007) X=0.10 X=0.14 X=0.18 X=0.20 X=0.10 X=0.14 X=0.18 X=0.20 Antinodal (B1g) peak shifts to higher energy and its intensity decreases with underdoping. Nodal (B2g) peak shifts to lower energy with weaker effect on intensity with underdoping.

Two pair-breaking transitions below xc BV and E. Bascones PRl 98, 227002 (2007) X=0.10 Pair breaking transitions with energy 2E+ and 2E- appear for x<xc when entering the superconducting state X=0.14 X=0.18 X=0.20 Only one pair breaking transition can be distinguished for x≥xc X=0.25

Two pair-breaking transitions below xc BV and E. Bascones PRl 98, 227002 (2007) X=0.14, E- X=0.14, E+ X=0.20, E-& E+

Gap at the maximum intensity surface: U-shape in ARPES BV and E. Bascones PRl 98, 227002 (2007) X=0.14 (x<xc) X=0.20 (x ≥ xc) E E coskx-cosky coskx-cosky ky ky U-shape vD decreases Dmax increases with underdoping V-shape Single scale vD=Dmax kx kx

The convergence of the two energy scales and the possible phase-diagram scenarios BV and E. Bascones PRl 98, 227002 (2007) QCP scenario T=0 Do not confuse convergence of scales below Tc with convergence of T* and Tc xc

Autocorrelation of ARPES data (AC-ARPES) Dispersive peaks in Superconducting State Non-Dispersive peaks in Pseudogap from momenta joining the tips of the Fermi arcs along bond Chatterjee et al, PRL 96, 067005 (2006) Suggest similar origin for dispersive and non-dispersive peaks

AC-ARPES in the absence of Pseudogap Correlations (beyond xc) Dispersive peaks in SC State Calculated AC-ARPES spectra EXPERIMENT

AC-ARPES in the Pseudogap State (below xc) along bond EXPERIMENT Chatterjee et al, PRL 96, 067005 (2006) Calculated AC-ARPES spectra E. Bascones and B. V. cond-mat/0702111 q 2 3(2 Suggests q*5 as origin of ¾ substructure

Dispersive and/or non-dispersive peaks can appear in the SC state below xc -> confirmed in Chatterjee arXiv:0705.4136 E. Bascones and B. V. cond-mat/0702111

Summary Two energy scales (nodal and antinodal) in the Raman and ARPES spectra appear naturally in some QCP models below xc With the YRZ Green’s function scenario vD is a good measure of the superconducting order parameter In this picture the suppression of intensity in B1g channel with underdoping is a consequence of the competition between pseudogap and superconductivity These results suggest that there is a QCP under the superconducting dome in the high-Tc phase diagram Other experiments? Autocorrelated ARPES, Prediction: Dispersive and non dispersive peaks in underdoped SC cuprates ->confirmed in experiments

Doping independent slope in B2g at low frequencies X=0.14 X=0.18 X=0.20 BV and E. Bascones PRl 98, 227002 (2007) Le Tacon et al, Nat. Phys. 2, 537 (2006)

Hole-doped High-Tc Superconductors Cu O (added holes per Cu ion) Norman et al, Nature 392, 157 (1998) Overdoped X=0 (undoped) Mott insulator Optimally doped (Highest Tc)

How to fulfill Luttinger sum rule? Luttinger surface X=0.05 X=0.10 X=0.14 Hole pockets X=0.18 X=0.20 Topological QCP Yang, Rice,Zhang PRB 73, 174501 (2006)

A third “crossing” transition is expected below xc Superconducting state BV and E. Bascones PRl 98, 227002 (2007) A transition with energy E-+E+ is expected in both superconducting and pseudogap states X=0.14 Pseudogap state X=0.14 Small effect of this transition in the subtracted response

Total Raman response in the SC state BV and E. Bascones PRl 98, 227002 (2007) The crossing transition is hardly distinguished in the superconducting state

And what else? BV and E. Bascones PRl 98, 227002 (2007) B1g: antinodal region participates in superconductivity. What about QCP models with symmetry-breaking? Not absolutely ruled out by these experiments but work worse and no clear evidence of phase transition from other measurements. Pseudogap without long-range, hole pockets, Luttinger surface, QCP, two gaps in the SC state and vD ~DS also in cellular DMFT