CS 35101 Computer Architecture Fall 2009 Lecture 01: Introduction Dr. Angela Guercio (www.personal.kent.edu/~aguercio)www.personal.kent.edu/~aguercio Course.

Slides:



Advertisements
Similar presentations
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Yaohang Li.
Advertisements

Computer Abstractions and Technology
Power calculation for transistor operation What will cause power consumption to increase? CS2710 Computer Organization1.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Chapter 1 CSF 2009 Computer Performance. Defining Performance Which airplane has the best performance? Chapter 1 — Computer Abstractions and Technology.
Lec 2 Aug 31 review of lec 1 continue Ch 1 course overview performance measures Ch 1 exercises quiz 1.
CS/ECE 3330 Computer Architecture Chapter 1 Performance / Power.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
EET 4250: Chapter 1 Performance Measurement, Instruction Count & CPI Acknowledgements: Some slides and lecture notes for this course adapted from Prof.
Introduction to Computer Architecture SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SUMMER 2015 RAMYAR SAEEDI.
Morgan Kaufmann Publishers Computer Abstractions and Technology
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Chapter 1 CSF 2009 Computer Abstractions and Technology.
CS 161 Spring 2009Course administration Instructor: Laxmi N. Bhuyan Office: 351 Engg. 2 Website:
Chapter 1 Computer Abstractions and Technology Part II.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology.
EET 4250: Chapter 1 Computer Abstractions and Technology Acknowledgements: Some slides and lecture notes for this course adapted from Prof. Mary Jane Irwin.
Chapter 1 - The Computer Revolution Chapter 1 — Computer Abstractions and Technology — 1  Progress in computer technology  Underpinned by Moore’s Law.
Sogang University Advanced Computing System Chap 1. Computer Architecture Hyuk-Jun Lee, PhD Dept. of Computer Science and Engineering Sogang University.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology Sections 1.5 – 1.11.
Chapter 1 — Computer Abstractions and Technology — 1 Understanding Performance Algorithm Determines number of operations executed Programming language,
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Performance Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
Chapter 1 Technology Trends and Performance. Chapter 1 — Computer Abstractions and Technology — 2 Technology Trends Electronics technology continues to.
Morgan Kaufmann Publishers
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Chapter 1 — Computer Abstractions and Technology — 1 Below Your Program Application software – Written in high-level language System software – Compiler:
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /03/2013 Lecture 3: Computer Performance Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER SCIENCE.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Yaohang Li.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology.
Chapter 1 — Computer Abstractions and Technology — 1 Uniprocessor Performance Constrained by power, instruction-level parallelism, memory latency.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
CS Computer Architecture Fall 2010 Dr. Angela Guercio ( Course Web Page
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
Chapter 1 Performance & Technology Trends. Outline What is computer architecture? Performance What is performance: latency (response time), throughput.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface ARM Edition Chapter 1 Computer Abstractions and Technology.
Chapter 1 Computer Abstractions and Technology. Chapter 1 — Computer Abstractions and Technology — 2 The Computer Revolution Progress in computer technology.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology.
Computer Architecture & Operations I
Computer Architecture & Operations I
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Technology Trends and Performance
Measuring Performance II and Logic Design
Morgan Kaufmann Publishers Computer Abstractions and Technology
Computer Architecture and Organization
Computer Architecture & Operations I
Morgan Kaufmann Publishers
CS161 – Design and Architecture of Computer Systems
CS161 – Design and Architecture of Computer Systems
Performance Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
Morgan Kaufmann Publishers Computer Abstractions and Technology
Computer Architecture & Operations I
Morgan Kaufmann Publishers Computer Architecture
Xiang Lian The University of Texas-Pan American
Morgan Kaufmann Publishers Computer Abstractions and Technology
Uniprocessor Performance
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
Morgan Kaufmann Publishers Computer Abstractions and Technology
CS161 – Design and Architecture of Computer Systems
Computer Abstractions and Technology
Presentation transcript:

CS Computer Architecture Fall 2009 Lecture 01: Introduction Dr. Angela Guercio ( Course Web Page CS Fa09.html

Course Administration Instructor:Dr. Angela Guercio 424 Main Hall Office Hrs: TR 10:00am - 10:55am 12:25pm - 1:55pm 4:55pm - 5:25pm other times are available by appointment URL: 600Fa09.htmlhttp:// 600Fa09.html Text (Required): D. Patterson, J.Hennessy - Computer Organization and Design, 4 th Edition, Morgan Kaufmann, 2009 Slides:pdf on Flashline under My Courses

The Syllabus: Requirements Class attendance is required. If you miss a class, let me know ahead of time You cannot miss more than 4 classes without documentation For >4 you must provide the documented reason. You are responsible for bringing yourself up-to-date on class material and assignments Penalty: drop of the grade (ex from A to B, from B to C, ect.) Reading material before class is required Read material once before class and again after class

Course Content The course provides a functional overview of: computer systems, interconnection of basic components, system performance measures, instruction set design, arithmetic logic unit control unit, memory system, pipelining, interrupts input-output. structures from an object oriented perspective. Content

Course Goals To learn the organizational paradigms that determine the capabilities and performance of computer systems. To understand the interactions between the computer’s architecture and its software future software designers (compiler writers, operating system designers, database programmers, …) can achieve the best cost-performance trade-offs future architects understand the effects of their design choices on software applications. Goals CS22021 CS I Course prerequisites

The Exams 2 Mid Term Exams and 1 Final Exam 100 points each No Make-up exams Except in extreme case and only if I have been notified prior the exam has been issued Homework and Projects must be returned by the deadline Late penalty: 3 points per day

The Grade Participation 5% Attendance5% Homework and Projects40% Exam 1 and 230% Final Exam 20% Check the syllabus for the grading scale

Dates to Remember Last day to withdraw before grade W is assigned, is Sept.13, 2009 Last day to drop the class is Nov. 8, 2009 Exam 1 is Thursday, Oct 1 Exam 2 is Thursday, Nov 10 Final Exam is Tuesday, Dec. 15 (1:00 pm – 3:00pm) Thanksgiving Recess: Nov. 25 – Nov. 29 Classes End: Dec. 15, 2009

Others: more on the syllabus Read the syllabus for: Course Withdrawal Academic Honesty Policy Students with Disabilities Classes Canceled – Campus Closings Conduct And other important issues

Others: Security Emergency: In case of an emergency please contact the security on campus. Security phone on campus: #53123 Security cell phone (330) or, of course, 911. I recommend that you program into your cell phone the previous numbers.

Course Structure Various homework assignments throughout the semester Some projects. Design focused class 3 weeks learn the MIPS ISA and basic architecture 2 weeks pipelined datapath design issues 3 weeks superscalar/VLSI datapath design issues 2 week memory hierarchies and memory design issues 1 weeks I/O design issues 3 weeks review and practice 1 week exams Lectures:

Questions you will be able to answer by the end of the course…. How are programs written in high level language execute on the HW? What is the interface between SW and HW? How does SW instruct the HW? What determine the performance of a program? How can a programmer improve the performance What technique can be use by HW to improve the performance?

How Do the Pieces Fit Together? I/O systemInstr. Set Proc. Compiler Operating System Application Digital Design Circuit Design Instruction Set Architecture Firmware Coordination of many levels of abstraction Under a rapidly changing set of forces Design, measurement, and evaluation Datapath & Control Memory system CS 33211

Chapter 1 Computer Abstractions and Technology

Chapter 1 — Computer Abstractions and Technology — 15 The Computer Revolution Progress in computer technology Underpinned by Moore’s Law Makes novel applications feasible Computers in automobiles Cell phones Human genome project World Wide Web Search Engines Computers are pervasive §1.1 Introduction

Chapter 1 — Computer Abstractions and Technology — 16 Classes of Computers Desktop computers General purpose, variety of software Subject to cost/performance tradeoff Server computers Network based High capacity, performance, reliability Range from small servers to building sized Embedded computers Hidden as components of systems Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 17 The Processor Market

Chapter 1 — Computer Abstractions and Technology — 18 What You Will Learn How programs are translated into the machine language And how the hardware executes them The hardware/software interface What determines program performance And how it can be improved How hardware designers improve performance What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 19 Understanding Performance Algorithm Determines number of operations executed Programming language, compiler, architecture Determine number of machine instructions executed per operation Processor and memory system Determine how fast instructions are executed I/O system (including OS) Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 20 Below Your Program Application software Written in high-level language System software Compiler: translates HLL code to machine code Operating System: service code Handling input/output Managing memory and storage Scheduling tasks & sharing resources Hardware Processor, memory, I/O controllers §1.2 Below Your Program

Chapter 1 — Computer Abstractions and Technology — 21 Levels of Program Code High-level language Level of abstraction closer to problem domain Provides for productivity and portability Assembly language Textual representation of instructions Hardware representation Binary digits (bits) Encoded instructions and data

Chapter 1 — Computer Abstractions and Technology — 22 Components of a Computer Same components for all kinds of computer Desktop, server, embedded Input/output includes User-interface devices Display, keyboard, mouse Storage devices Hard disk, CD/DVD, flash Network adapters For communicating with other computers §1.3 Under the Covers The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 23 Anatomy of a Computer Output device Input device Network cable

Chapter 1 — Computer Abstractions and Technology — 24 Anatomy of a Mouse Optical mouse LED illuminates desktop Small low-res camera Basic image processor Looks for x, y movement Buttons & wheel Supersedes roller-ball mechanical mouse

Chapter 1 — Computer Abstractions and Technology — 25 Through the Looking Glass LCD screen: picture elements (pixels) Mirrors content of frame buffer memory

Chapter 1 — Computer Abstractions and Technology — 26 Opening the Box

Chapter 1 — Computer Abstractions and Technology — 27 Inside the Processor (CPU) Datapath: performs operations on data Control: sequences datapath, memory,... Cache memory Small fast SRAM memory for immediate access to data

Chapter 1 — Computer Abstractions and Technology — 28 Inside the Processor AMD Barcelona: 4 processor cores

Chapter 1 — Computer Abstractions and Technology — 29 Abstractions Abstraction helps us deal with complexity Hide lower-level detail Instruction set architecture (ISA) The hardware/software interface Application binary interface The ISA plus system software interface Implementation The details underlying and interface The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 30 A Safe Place for Data Volatile main memory Loses instructions and data when power off Non-volatile secondary memory Magnetic disk Flash memory Optical disk (CDROM, DVD)

Chapter 1 — Computer Abstractions and Technology — 31 Networks Communication and resource sharing Local area network (LAN): Ethernet Within a building Wide area network (WAN: the Internet Wireless network: WiFi, Bluetooth

Chapter 1 — Computer Abstractions and Technology — 32 Technology Trends Electronics technology continues to evolve Increased capacity and performance Reduced cost YearTechnologyRelative performance/cost 1951Vacuum tube1 1965Transistor Integrated circuit (IC) Very large scale IC (VLSI)2,400, Ultra large scale IC6,200,000,000 DRAM capacity

Chapter 1 — Computer Abstractions and Technology — 33 Defining Performance Which airplane has the best performance? §1.4 Performance

Chapter 1 — Computer Abstractions and Technology — 34 Response Time and Throughput Response time How long it takes to do a task Throughput Total work done per unit time e.g., tasks/transactions/… per hour How are response time and throughput affected by Replacing the processor with a faster version? Adding more processors? We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 35 Relative Performance Define Performance = 1/Execution Time “X is n time faster than Y” Example: time taken to run a program 10s on A, 15s on B Execution Time B / Execution Time A = 15s / 10s = 1.5 So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 36 Measuring Execution Time Elapsed time Total response time, including all aspects Processing, I/O, OS overhead, idle time Determines system performance CPU time Time spent processing a given job Discounts I/O time, other jobs’ shares Comprises user CPU time and system CPU time Different programs are affected differently by CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 37 CPU Clocking Operation of digital hardware governed by a constant-rate clock Clock (cycles) Data transfer and computation Update state Clock period Clock period: duration of a clock cycle e.g., 250ps = 0.25ns = 250×10 –12 s Clock frequency (rate): cycles per second e.g., 4.0GHz = 4000MHz = 4.0×10 9 Hz

Chapter 1 — Computer Abstractions and Technology — 38 CPU Time Performance improved by Reducing number of clock cycles Increasing clock rate Hardware designer must often trade off clock rate against cycle count

Chapter 1 — Computer Abstractions and Technology — 39 CPU Time Example Computer A: 2GHz clock, 10s CPU time Designing Computer B Aim for 6s CPU time Can do faster clock, but causes 1.2 × clock cycles How fast must Computer B clock be?

Chapter 1 — Computer Abstractions and Technology — 40 Instruction Count and CPI Instruction Count for a program Determined by program, ISA and compiler Average cycles per instruction Determined by CPU hardware If different instructions have different CPI Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 41 CPI Example Computer A: Cycle Time = 250ps, CPI = 2.0 Computer B: Cycle Time = 500ps, CPI = 1.2 Same ISA Which is faster, and by how much? A is faster… …by this much

Chapter 1 — Computer Abstractions and Technology — 42 CPI in More Detail If different instruction classes take different numbers of cycles Weighted average CPI Relative frequency

Chapter 1 — Computer Abstractions and Technology — 43 CPI Example Alternative compiled code sequences using instructions in classes A, B, C ClassABC CPI for class123 IC in sequence 1212 IC in sequence 2411 Sequence 1: IC = 5 Clock Cycles = 2×1 + 1×2 + 2×3 = 10 Avg. CPI = 10/5 = 2.0 Sequence 2: IC = 6 Clock Cycles = 4×1 + 1×2 + 1×3 = 9 Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 44 Performance Summary Performance depends on Algorithm: affects IC, possibly CPI Programming language: affects IC, CPI Compiler: affects IC, CPI Instruction set architecture: affects IC, CPI, T c The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 45 Power Trends In CMOS IC technology §1.5 The Power Wall ×1000 ×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 46 Reducing Power Suppose a new CPU has 85% of capacitive load of old CPU 15% voltage and 15% frequency reduction The power wall We can’t reduce voltage further We can’t remove more heat How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 47 Uniprocessor Performance §1.6 The Sea Change: The Switch to Multiprocessors Constrained by power, instruction-level parallelism, memory latency

Chapter 1 — Computer Abstractions and Technology — 48 Multiprocessors Multicore microprocessors More than one processor per chip Requires explicitly parallel programming Compare with instruction level parallelism Hardware executes multiple instructions at once Hidden from the programmer Hard to do Programming for performance Load balancing Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 49 Manufacturing ICs Yield: proportion of working dies per wafer §1.7 Real Stuff: The AMD Opteron X4

Chapter 1 — Computer Abstractions and Technology — 50 AMD Opteron X2 Wafer X2: 300mm wafer, 117 chips, 90nm technology X4: 45nm technology

Chapter 1 — Computer Abstractions and Technology — 51 Integrated Circuit Cost Nonlinear relation to area and defect rate Wafer cost and area are fixed Defect rate determined by manufacturing process Die area determined by architecture and circuit design

Chapter 1 — Computer Abstractions and Technology — 52 SPEC CPU Benchmark Programs used to measure performance Supposedly typical of actual workload Standard Performance Evaluation Corp (SPEC) Develops benchmarks for CPU, I/O, Web, … SPEC CPU2006 Elapsed time to execute a selection of programs Negligible I/O, so focuses on CPU performance Normalize relative to reference machine Summarize as geometric mean of performance ratios CINT2006 (integer) and CFP2006 (floating-point)

Chapter 1 — Computer Abstractions and Technology — 53 CINT2006 for Opteron X NameDescriptionIC×10 9 CPITc (ns)Exec timeRef timeSPECratio perlInterpreted string processing2, , bzip2Block-sorting compression2, , gccGNU C Compiler1, , mcfCombinatorial optimization ,3459, goGo game (AI)1, , hmmerSearch gene sequence2, , sjengChess game (AI)2, , libquantumQuantum computer simulation1, ,04720, h264avcVideo compression3, , omnetppDiscrete event simulation , astarGames/path finding1, , xalancbmkXML parsing1, ,1436, Geometric mean11.7 High cache miss rates

Chapter 1 — Computer Abstractions and Technology — 54 SPEC Power Benchmark Power consumption of server at different workload levels Performance: ssj_ops/sec Power: Watts (Joules/sec)

Chapter 1 — Computer Abstractions and Technology — 55 SPECpower_ssj2008 for X4 Target Load %Performance (ssj_ops/sec)Average Power (Watts) 100%231, %211, %185, %163, %140, %118, %920, %70, %47, %23, %0141 Overall sum1,283,5902,605 ∑ssj_ops/ ∑power493

Chapter 1 — Computer Abstractions and Technology — 56 Pitfall: Amdahl’s Law Improving an aspect of a computer and expecting a proportional improvement in overall performance §1.8 Fallacies and Pitfalls Can’t be done! Example: multiply accounts for 80s/100s How much improvement in multiply performance to get 5× overall? Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 57 Fallacy: Low Power at Idle Look back at X4 power benchmark At 100% load: 295W At 50% load: 246W (83%) At 10% load: 180W (61%) Google data center Mostly operates at 10% – 50% load At 100% load less than 1% of the time Consider designing processors to make power proportional to load

Chapter 1 — Computer Abstractions and Technology — 58 Pitfall: MIPS as a Performance Metric MIPS: Millions of Instructions Per Second Doesn’t account for Differences in ISAs between computers Differences in complexity between instructions CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 59 Concluding Remarks Cost/performance is improving Due to underlying technology development Hierarchical layers of abstraction In both hardware and software Instruction set architecture The hardware/software interface Execution time: the best performance measure Power is a limiting factor Use parallelism to improve performance §1.9 Concluding Remarks