Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.

Slides:



Advertisements
Similar presentations
Elements - Names and Symbols n Hydrogen nHnH n Helium n He n Lithium n Li.
Advertisements

Periodic Table of Elements Elements? The Path to High Brix Foundation Parameters for Biological Function.
Suzanne D'Anna1 Composition of Matter. Suzanne D'Anna2 Composition of Matter l all matter is composed of ELEMENTS l elements cannot be decomposed or broken.
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Teresa Kurtukian-Nieto Centre d’Etudes Nucléaires de Bordeaux Gradignan Precision half-life determination of the superallowed 0 + → 0 + β + -emmiters 42.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
TPC for 2p radioactivity studies Bertram Blank, CENBG.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Hydrogen H Zinc Zn Chlorine Cl Copper Cu Helium He.
Periodic Table of the Elements Written by: Bill Byles -
Flashcard Elements Sodium Na Potassium K Fluorine F.
Alkali Metals Nobel Gases Halides Non Metals
Electron Distribution Chemistry Dr. May. Orbitals And Suborbitals atom 1s2s 2p3s 3p4s.
Scandium Sc. Titanium Ti Vanadium V Chromium Cr.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Element Symbol Practice. Carbon C Potassium K Beryllium Be.
From CATE to LYCCA Mike Taylor Particle Identification After the Secondary Target.
Note: If the cation has a Roman numeral, you MUST include the correct Roman numeral!
Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI Groningen Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI.
Two-proton radioactivity: an experimentalist’s view Catalin Borcea CEN Bordeaux-Gradignan and IFIN-HH NANUF03, Bucharest September 7-12, 2003 Two proton.
Pygmy Dipole Resonance in 64Fe
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
1 Beta Counting System Li XiangQing, Jiang DongXing, Hua Hui, Wang EnHong Peking University
Chapter 15 Nuclear Radiation
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Subatomic Particles Agenda   Review   GAME   Song   Notes   Guided practice   Homework.
Radiochemistry Dr Nick Evans
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Ionic Bonding (Part III) Slightly More Complex Ionic Compounds.
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Study of Elements All Elements. Chromium Cr Hydrogen H.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Bertram Blank CEN Bordeaux-Gradignan main physics goals detector scans source measurements MC simulations ISOLDE workshop, December 5-7, 2011.
The Reactions The Main Sequence – The P – P Chain 1 H + 1 H  2 H + proton + neutrino 2 H + 1 H  3 He + energy 3 He + 3 He  4 H + 1 H + 1 H + energy.
Study of isomeric states using gamma spectroscopy around N=40 C. Petrone 1,2, J. M. Daugas 3, M. Stanoiu 1, F. Negoita 1, G. Simpson 4, C. Borcea 1, R.
Technical solutions for N=Z Physics David Jenkins.
Measurement of the super-allowed branching ratio of 22 Mg B. Blank, M. Aouadi, P. Ascher, M. Gerbaux, J. Giovinazzo, T. Goigoux, S. Grévy, T. Kurtukian.
Bertram Blank – CENBG, Bordeaux, France Joint LIA COLL ‐ AGAIN, COPIGAL, and POLITA Workshop Catania, Italy, April 2016 Two-proton radioactivity.
Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity.
Proton emission from deformed rare earth nuclei Robert Page.
CHEMICAL INTERACTIONS Ch 1.1 Atoms are the smallest forms of elements.
57 Elements Test Review. Hydrogen H Lithium Li.
Activation by Heavy-Ion Beams
H Hydrogen.
WARM UP “Nothing is particularly hard if you break it into small jobs.” –Henry Ford What does this mean to you? How can you apply this to memorizing all.
High-resolution Studies of Charge Exchange on 47,48Ti in comparison with Shell Model Calculations Ela Ganioğlu Istanbul University E. Ganioglu, Stockholm.
Periodic Table Element flashcards
Chemistry of glaze.
Isospin Symmetry test on the semimagic 44Cr
H stands for the hydrogen atom He is helium Li is lithium
Elements
Element Quiz 2 Study Guide
KNOCKHARDY PUBLISHING
Increase in Ease of Oxidation
Presentation transcript:

Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan ESNT, Saclay, April, 26-29, 2011

The idea: T, T z - 1 T-3/2, T z -3/2 T, T z Super-allowed  decay Proton emission T - 1, T z - 1 Gamma decay

The idea: 52 Co: T=2, T z =-1 51 Fe: T=1/2, T z =-1/2 52 Ni: T=2, T z= -2 Super-allowed  decay Proton emission: T=1/2, T z = -1/2 T= ½ + ½ T = 1, T z = -1 T = 2 Gamma decay Can one determine the isospin impurity of the IAS?

 Calcium: 37,36 Ca  Titanium: 41,40,39 Ti  Vanadium: 43 V  Chromium: 45,44,43,42 Cr  Manganese : 47,46 Mn  Iron: 49,48,47,46,45 Fe  Cobalt: 51,50 Co  Nickel: 53,52,51,50,49,48 Ni  Copper: 55 Cu  Zinc: 56,55,54 Zn Proton-rich nuclei in the region of Ca to Ni Mass region (20  Z  28 et Tz  -3/2)  5 experiments at GANIL  23 isotopes studied ( 39 Ti au 53 Ni) Mass region (20  Z  28 et Tz  -3/2)  5 experiments at GANIL  23 isotopes studied ( 39 Ti au 53 Ni)

Primary beam: MeV/A intensity:  Ae SISSI target: nat Ni 200 mg/cm 2 spectrometer LISE3 : degrader Be (50  m) Wien filter detection setup silicon telescope identification of implanted fragments DSSSD (X-Y): 2 x 16 x 3 mm - veto for light particles - residual energy, x-y position - energy loss - time of flight: micro-channel plate detectors RF cyclotron

Identification projectile fragments 7 to 8 identification parameters

Proton and gamma branching ratios and energies 41 Ti T B1B1 B2B2 A  41 Ti Radioactivity of 41 Ti Radioactivity of 49 Fe Correlation time Protons  41 Ti Contaminant from 49 Fe and 45 Cr

Background subtraction for  rays 49 Fe Before After Contaminants Decay of 49 Fe C. Dossat et al., NPA 792 (2007) 18

Spectroscopy of 52 Ni T 1/2 = (40.8 ± 0.2) ms P p = (31.4 ± 1.5) % E p = (2815 ± 23) keV I p = (0.9 ± 0.4) % E p = (1349 ± 10) keV I p = (9.4 ± 1.3) % E p = (1057 ± 11) keV I p = (2.9 ± 0.3) % C. Dossat et al., NPA 792 (2007) 18

Spectroscopy of 48 Fe T 1/2 = (40.8 ± 0.2) ms P p = (31.4 ± 1.5) % E p = (1013 ± 12) keV I p = (1.8 ± 0.3) % E p = ( ) keV I p = (1.4 ± 0.5) % E p = ( ) keV I p = (2.0 ± 0.4) % C. Dossat et al., NPA 792 (2007) 18

Isotop e Half-life (ms) Total proton branching ratio (%) Mass excess via IMME 37 Ca ± (43)- 36 Ca ± (10)- 41 Ti 82.6 ± (6) (7) 40 Ti 52.4 ± (13)-9.06(8) 39 Ti 28.5 ± (28)- 43 V 79.3 ± 2.4< Cr 60.9 ± (8) (3) 44 Cr 42.8 ± (9) (2) 43 Cr 21.1 ± (28)-1.92(6) 42 Cr 13.3 ± (50)- 47 Mn 88.0 ± 1.3< Mn 36.2 ± (8) (3) 49 Fe 64.7 ± (4) (2) 48 Fe 45.3 ± (6) (5) 47 Fe 21.9 ± (9)-7.08 (4) 46 Fe 13.0 ± (38)0.76 (10) 51 Co 68.8 ± 1.9< Co 38.8 ± (7) (4) 53 Ni 55.2 ± (10) (4) 52 Ni 40.8 ± (15) (3) 51 Ni 23.8 ± (8) (7) 50 Ni 18.5 ± (39)-4.14 (3) 49 Ni 7.5 ± (132)- 55 Cu 27.0 ± (43)- 56 Zn 30.0 ± (49)- 55 Zn 19.8 ± (51)-

 Proton emission from the IAS is isospin forbidden  Comparison of, and of for IAS : 48 Fe : = 2.1 % - = 30% = 42 % 52 Ni : = 10 % - = 38% = 64 %  Determination of isospin impurities with these experimental data: (experimental, theory)  ’ p : Coulomb and centrifugal barrier penetration S p = 1 Isospin impurities X

Isospin impurity: example of 48 Fe  = 2.1 %  = 42 %  I I = 0.52 % Measured energies (keV) Predicted energies (keV) E IAS 3037 (10)2979 E  (IAS – 1 + ) 2631 (1)2458 E  (2 + - ground state) (5)233 W.A. Richter, B.A. Brown IAS Shell model ( 48 Mn)

Isospin impurity: example of 52 Ni  = 10 %  = 64 %  I I = 19 % Measured energy (keV) Predicted energy (keV) E IAS 2931 (10)2796 Shell model ( 52 Co) IAS W.A. Richter, B.A. Brown

 neighboring nuclei: surprising…  however:  shell-model study : I I ( 36 Ca) = 0.4 %, I I ( 40 Ti) = 17.3 % (Theory Jyväskylä in sd shell)  similar treatment possible for many other nuclei: 45,44 Cr, 46 Mn, 49 Fe, 53,51 Ni…. I I ( 48 Fe) = 0.52 %, I I ( 52 Ni) = 19 % Isospin impurity of IAS B.A. Brown, N. Smirnova….