C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.

Slides:



Advertisements
Similar presentations
An introduction to the physics of the interstellar medium I. Overview II. Thermal processes in the ISM III. Hydrodynamics in the ISM IV. Gravity in the.
Advertisements

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
The ISM structure of low-metallicity star-forming dwarf galaxies Diane Cormier ITA, ZAH, University of Heidelberg – group of Frank Bigiel Suzanne Madden,
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Molecules in Starbursts and Active Galactic Nuclei Amiel Sternberg School of Physics & Astronomy Tel Aviv University NGC 1068.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Jonathan Slavin Harvard-Smithsonian CfA
[OI] and [NII] Observations of Relevance to STO Gordon Stacey.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Nebular Astrophysics.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Meudon PDR code on MHD simulations F. Levrier P. Hennebelle, E. Falgarone, M. Gerin, B. Ooghe (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT Gordon Stacey Thomas Nikola, Carl Ferkinhoff, Drew Brisbin, Steve Hailey-Dunsheath,
The Three-Phase Interstellar Medium
Photodissociation Regions Amiel Sternberg School of Physics & Astronomy Tel Aviv University ISRAEL Dense ISM in Galaxies Zermatt Switzerland September.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The [NII] Line Ratio  The ISO 122  m [NII] to SPIFI 205  m line ratio yields the density of the low ionization gas (Figure 5, blue line and circle)
[CII] mapping of the diffuse ISM with SPICA / SAFARI F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Cosmic Rays: Gas Phase Astrophysics and Astrochemistry Marco Spaans (Groningen) Rowin Meijerink (Leiden), Edo Loenen (Leiden), Paul van der Werf (Leiden),
Some atomic physics u H I, O III, Fe X are spectra –Emitted by u H 0, O 2+, Fe 9+ –These are baryons u For absorption lines there is a mapping between.
A NEW INTERSTELLAR MODEL FOR HIGH-TEMPERATURE TIME-DEPENDENT KINETICS Nanase Harada Eric Herbst The Ohio State University June 24, 2006 International Symposium.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
Motivation it is a key diagnostic of the ISM because: [CII] is the dominant cooling line of the ISM.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Introduction KU-4/2007 The ISM K.D.Kuntz The Henry A. Rowland Department of Physics and Astronomy The Johns Hopkins University (Diffuse Emission in Galaxies)
Jet Propulsion Laboratory
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Star Formation in Damped Lyman alpha Systems Art Wolfe Collaborators: J.X. Prochaska, J. C. Howk, E.Gawiser, and K. Nagamine.
Recontres de Moriond XXV La Thuile, March 2005 Recontres de Moriond XXV La Thuile, March 2005 Theoretical SEDs in Starbursts: SFRs in both the UV and IR.
Workshop in Extragalactic and Galactic ISM - Modelling in an ALMA Perspective Carbon in low Metallicity PDRs Markus Röllig 1 V. Ossenkopf 1,3, J. Stutzki.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Herschel View of the Warm Molecular Gas in the LMC Star-forming region N159W Min-Young Lee CEA-Saclay, France Collaborators S. Madden, V. Lebouteiller,
Distribution of Phases of the ISM - and how to see them
Ay126: Fine Structure Line Emission from the Galaxy
Stellar nurseries • Interstellar dust • Interstellar gas
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
The ISM and Stellar Birth
Presentation transcript:

C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012

SFR [CII] Heating Cooling

de Looze et al SFR (24  m + FUV) ISO [CII] Herrera-Camus et al KINGFISH PACS [CII] ~ 500 pc resolution Sargsyan et al [CII]/ L IR ~ const + SFR based on L IR SFR([CII])

Warm H T = 8000 K n = 0.3 cm -3 Cold H T = 80 K n = 30 cm -3 Cold H 2 T = 10 K Classic PDR Contributions to [CII] Line emission OB star H+H+ H+H+ H+H+ CNM WNM r ~ few pc r ~ 10s pc r~ 100s pc C + /HI C + /H 2 FUV Warm H + T = 8000 K N e = 5 cm -3 WIM EUV r ~ 100s pc ? [CII] a dominant coolant? Maybe NO YES!

Ionization: FUV, X-ray, C.R. Heating: P.E., C.R., X-ray/EUV Cooling: [CII], [OI], Ly , e - recombination n  = n 2  T = nT Wolfire et al. (2003) WNM stable CNM stable unstable T = 7860 n = 0.35 cm -3 WNM T = 85 n = 33 cm -3 CNM Diffuse Gas Emission

= nT 158  m 63  m Grain photoelectric C II Cooling/H (CNM) > 10 CII Cooling/H (WNM) Pmin Pmax ** Note ** CNM in Thermal Balance: [CII] measures the total energy dumped into the gas. Heating Rate = const n Z T [CII] = const Wolfire et al. (2003) Diffuse Gas Emission

Fraction of WNM/CNM ? Dickey et al CNM + WNM CNM [ CNM + WNM]/CNM Emission/L Absorption/L Emission/Absorption Heiles & Troland 2003: 60% WMN, 40% CNM locally in Galactic disk Assume: 2/3 WNM, 1/3 CNM to outer galaxy

Mathis et al Weingarter & Draine 2001 and 6eV In diffuse ISM 10-20% of heating can come from PAH - PAH + h PAH + + e - PAH - + h PAH + e - 2eV Malloci et al. 2007

PDR Emission Diffuse Gas Classic PDRs Orion PDR [CII] n Kaufman et al FUV Heating Efficiency G 0 /n = const n

PDR Emission Diffuse Gas Classic PDRs Orion PDR n n Kaufman et al FUV Heating Efficiency [OI]/[CII] cr n [CII] G 0 /n = const

Contribution from HII regions Teff= KAbel et al 2005 Fraction of [CII] from HII region Kaufman et al Z=3 Stellar association

Oberst et al Carina Nebula SPIFI [NII] 205  m ISO [CII] 30% [CII] diffuse ionised 70% [CII] neutral PDR Oberst et al. 2006

Mookerjea et al HerM33es PACS [CII][OI]M33 HII Region BCLMP % [CII] ionised gas 80-70% [CII] neutral PDR

LMC-N 11B Lebouteiller et al SHINING 5-15% [CII] diffuse ionised 95-85% [CII] neutral PDR

Bennett et al 1994, COBE FIRAS 7 o beam Diffuse ionized gas WIM Emission Wright et al Line log L [C II] 158  m 7.7 [N II] 122  m 6.9 [N II] 205  m 6.7 [C I] 370  m 5.5 [C I] 610  m 5.3

Bennett et al 1994, COBE FIRAS 7 o beam [CII] [CII] from [NII] [NII] Diffuse ionized gas Steiman-Cameron et al Cygnus X WIM Emission

What dominates the [CII] emission? Galactic: WIM – Heiles 1994 CNM – Bennett et al. 1994, Wolfire et al GMC – Stacey et al. 1985; Shibai et al Cubick et al 2008 What is the [CII] Budget ? Beam size? galaxy type ? Metallicity ? Where ? Extragalactic: Cormier et al. 2012: Low Z galaxy Haro 11 – 10% PDR, 90% in diffuse ionized Madden et al. 1997: Low Z galaxy IC 10 – 10% WIM, 10% CNM, 80% PDR with C + /H 2 Malhotra et al. 2001: Normal Galaxies - 50% WIM, PDRs G 0 = , n =

Stacey et al [CII] and CO are excited by (nearby?) star formation

Aniano et al Draine & Li 2007 NGC 6946 PACS 160 resolution On the other hand…… ~ 165 pc

Aniano et al Low average U ~ 5, low f PDR < 20% Wolfire, Hollenbach in prep: average U on GMCs ~10-30 Also Cubick et al. 2008, Pineda et al found U < 100 Mechanical Heating?

Jenkins & Tripp 2011 Small Scale Structure Turbulent Dissipation in CNM 3800 Log normal fit % 3x10 5 K cm -3 1)Warm diffuse cloud chemistry: CH +, HCO + Godard et al. 2009, Falgarone et al )Tiny-Scale Atomic Structure (TSAS): HI absorption 10s AU e.g. Heiles 1997 (TSIS), (TSMS) 3)Warm diffuse H 2 seen in emission Falgarone et al. 2005

Small Scale Structure (Continued) Turbulent Dissipation in CNM 4) High H 2 /PAH ratios seen in high latitude clouds. Ingalls et al )Warm H 2 in MC surfaces (low UV field). Goldsmith et al. 2010, Habart et al Habart et al Spitzer H 2 observations Model Meudon PDR code FUV field strength L1721 California NGC 7023E Horsehead Rho Oph NGC 2023N

MHD shocks: Pineau des Forêts et al 1986 Shears: Joulain et al TDRs – 100s AU: Godard et al Turbulent Dissipation Region (TDR) adiabatic cooling

de Looze et al SFR (24  m + FUV) ISO [CII] Herrera-Camus et al KINGFISH PACS [CII] ~ 500 pc resolution [CII]/ L IR ~ const + SFR based on L IR SFR([CII]) Sargsyan et al. 2012

extinction opacity cirrus L(H  ) true + IMF + Starbust99 = SFR Kennicutt et al. 2009

L(P  ) true + IMF + Starbust99 = SFR Calzetti et al. 2007

Herrera-Camus et al Low [CII]/IR seen in AGN, regions of normal galaxies, and ULIRGs. 1)Grain charging 2)Dust optical depth at 158  m 3)Dusty HII regions 4)High density Low [CII]/24  m points do not measure SFR

de Looze et al SFR (24  m + FUV) ISO [CII] Herrera-Camus et al KINGFISH PACS [CII] ~ 500 pc resolution [CII]/ L IR ~ const + SFR based on L IR SFR([CII]) Sargsyan et al. 2012

SFR [CII] Heating Cooling 1)[CII] not dominated by high G 0 - high n PDRs: [OI]/[CII] > 1 and low heating efficiency 2)WIM/HII contribution is uncertain ~ 30% 3)[CII] mainly comes from low to moderate G 0 and moderate n PDRs plus some neutral diffuse gas (mainly in outer galaxy). Keeps CII/CO relation and [CII] as a dominant coolant. 5)Mechanical heating does not dominate due to correlation with radiative tracers (24  m) 4)Dust fits correct? [CII] comes mainly from low UV fields (everywhere in galaxy). [CII]/CO correlation? [OI] problem?

6)[CII] as SFR breaks down (or another calibration is needed – Sargsyan et al. 2012) for AGN and ULIRGs due to low [CII]/L IR