WP 4: Real -Time Shake Maps GRSmap a tool for rapid estimation of ground-shaking maps for seismic emergency management in the Campania Region of southern.

Slides:



Advertisements
Similar presentations
A controlled-source experiment to investigate the origin of wavefield polarization in fault zones Giuseppe Di Giulio 1, Antonio Rovelli 2, Fabrizio Cara.
Advertisements

ERROR DISTRIBUTIONS Ground Motion Prediction Equations derived from the Italian Accelerometric Archive (ITACA) Bindi + D., Pacor* F., Luzi* L., Puglia*
SAFER Project final meeting, Potsdam, 3-5 June, 2009 Nicholas Voulgaris Contribution of the Seismological Laboratory National & Kapodistrian University.
Fast determination of earthquake source parameters from strong motion records: Mw, focal mechanism, slip distribution B. Delouis, J. Charlety, and M. Vallée.
SAFER Project - FINAL MEETING Elin Skurtveit & Amir M. Kaynia - NGI
Earthquake engineering and real-time early warning: the AMRA perspective. Iunio Iervolino* and Gaetano Manfredi *Assistant Professor of Structural Engineering.
EARLY-WARNING TEST-SITE NAPLES Giovanni Iannaccone INGV – AMRA scarl Final Project Meeting: Potsdam June, 3-5,2009 With the main contribution of RISSC-Lab.
Task 2. Test site Messina Strait WP2.5 G. Neri, Univ. Messina Meccanismi dei terremoti e regimi di stress tettonico nellarea dello Stretto di Messina.
On going development of a seismic alert management system for the Campania region (southern Italy) A.Zollo(1), G. Iannaccone(2),C.Satriano(1), E.Weber(2),
2nd year SAFER Project meeting. Armada Hotel, Istanbul, Turkey June, Information-dependent lead time maps for earthquake early warning in the.
Real-Time Estimation of Earthquake Location and Magnitude for Seismic Early Warning in Campania Region, southern Italy A. Zollo and RISSC-Lab Research.
Review of Catalogs and Rate Determination in UCERF2 and Plans for UCERF3 Andy Michael.
Original Figures for "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring"
Calibration of the input parameters in pilot test areas D. Galluzzo, F. Bianco, H. Langer, L.Scarfi, G. Tusa & G. Zonno INGV, Catania, Milano, Napoli,
PREDICTION OF RESPONSE SPECTRAL PARAMETERS FOR BHUJ EARTHQUAKE (26TH JANUARY 2001) USING COMPONENT ATTENUATION MODELLING TECHNIQUE By DR. SAROSH.H. LODI.
Ground motion simulations and site effect estimation for Istanbul, Turkey Mathilde Bøttger Sørensen 1, Nelson Pulido 2, Sylvette Bonnefoy-Claudet 3, Kuvvet.
Prague, March 18, 2005Antonio Emolo1 Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Integrating Probabilistic and Deterministic Approaches.
Skopje, Oct 2012 Radmila Salic, MSc. 1 st Project Workshop and Kick-Off Meeting Improvements in the Harmonized Seismic Hazard Maps for the Western.
Deterministic Seismic Hazard Analysis Earliest approach taken to seismic hazard analysis Originated in nuclear power industry applications Still used for.
Envelope-based Seismic Early Warning: Virtual Seismologist method G. Cua and T. Heaton Caltech.
Characterization of Ground Motion Hazard PEER Summative Meeting - June 13, 2007 Yousef Bozorgnia PEER Associate Director.
The RSNI Seismic Network Laboratory of seismology, DISTAV - University of Genoa (Italy) RSNI STAFF RSNI STAFF : Spallarossa D.,
UNIVERSITY OF ATHENS Faculty of Geology and Geoenvironment Department of Geophysics and Geothermics A. Agalos (1), P. Papadimitriou (1), K. Makropoulos.
Average properties of Southern California earthquake ground motions envelopes… G. Cua, T. Heaton Caltech.
SECOND EUROPEAN CONFERENCE ON EARTHQUAKE ENGINEERING AND SEISMOLOGY ISTANBUL | Turkey | Aug , 2014 Feasibility study of a nation-wide Early Warning.
RAPID SOURCE PARAMETER DETERMINATION AND EARTHQUAKE SOURCE PROCESS IN INDONESIA REGION Iman Suardi Seismology Course Indonesia Final Presentation of Master.
Seismic Hazard Assessment for the Kingdom of Saudi Arabia
The following figures show three modeled measures of network capability 1) Minimum magnitude threshold 2) Network detection time 3) Earthquake Location.
26 July 2013 Símon Ólafsson, EERC
FEASIBILITY STUDY OF A REGIONAL EEW SYSTEM FOR THE EASTERN CARIBBEAN REGION ZUCCOLO Elisa, SALAZAR Walter, DI SARNO Luigi, FARRELL Anthony, GIBBS Tony,
RESOLVING FOCAL DEPTH WITH A NEAR FIELD SINGLE STATION IN SPARSE SEISMIC NETWORK Sidao Ni, State Key Laboratory of Geodesy and Earth’s Dynamics, Institute.
The kinematic representation of seismic source. The double-couple solution double-couple solution in an infinite, homogeneous isotropic medium. Radiation.
INTRODUCTION When two or more instruments sound the same portion of atmosphere and observe the same species either in different spectral regions or with.
PEER Jonathan P. Stewart University of California, Los Angeles Graduate Students: Yoojoong Choi and Andrew Liu January 18, PEER Annual Meeting.
Application of SASHA for the Icelandic case Vera D’Amico 1, Dario Albarello 2, Ragnar Sigbjörnsson 3, Rajesh Rupakhety 3 1 Istituto Nazionale di Geofisica.
Complex earthquake directivity during the 2009 L’ Aquila mainshock Tinti E., Scognamiglio L., Cirella A., Cocco M., and A. Piatanesi Istituto Nazionale.
Strong motion data and empirical ground motion models for low seismicity areas: the case of the Po Plain (Northern Italy) Massa M. (1), Pacor F. (1), Bindi.
Fig. 1. A wiring diagram for the SCEC computational pathways of earthquake system science (left) and large-scale calculations exemplifying each of the.
ITACA: The New Italian Strong-Motion Database Pacor* F., Paolucci^ R., and Working Groups ITACA of S4 Project *Istituto Nazionale di Geofisica e Vulcanologia.
Validation of physics-based ground motion earthquake simulations using a velocity model improved by tomographic inversion results 1 Ricardo Taborda, 1.
A1 A2 Standard scenario Ground motions are calculated for a standard scenario earthquake. Afterwards, source parameters are varied one by one, and the.
Epistemic Uncertainty on the Median Ground Motion of Next-Generation Attenuation (NGA) Models Brian Chiou and Robert Youngs The Next Generation of Research.
GLOBAL EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract We.
An Assessment of the High-Gain Streckheisen STS2 Seismometer for Routine Earthquake Monitoring in the US ISSUE: Is the high-gain STS2 too sensitive to.
A GRID solution for Gravitational Waves Signal Analysis from Coalescing Binaries: preliminary algorithms and tests F. Acernese 1,2, F. Barone 2,3, R. De.
GROUND MOTION VARIABILITY: COMPARISON OF SURFACE AND DOWNHOLE GROUND MOTIONS Adrian Rodriguez-Marek, Washington State University, USA Fabrice Cotton, LGIT,
Ground motion simulations in the Pollino region (Southern Italy) for Mw 6.4 scenario events.
Surface-wave Derived Focal Mechanisms in Mid-America R. B. Herrmann 1, C. J. Ammon 2 and H. M. Benz 3 1 Saint Louis University, 2 Pennsylvania State University,
HIGH FREQUENCY GROUND MOTION SCALING IN THE YUNNAN REGION W. Winston Chan, Multimax, Inc., Largo, MD W. Winston Chan, Multimax, Inc., Largo, MD Robert.
GROUND MOTION SIMULATIONS AT RAPID RESPONSE SITES IN ISTANBUL, TURKEY Mathilde Bøttger Sørensen 1, Nelson Pulido 2, Anibal Ojeda 3, Kuvvet Atakan 1, Mustafa.
UCERF3 Uniform California Earthquake Rupture Forecast (UCERF3) 14 Full-3D tomographic model CVM-S4.26 of S. California 2 CyberShake 14.2 seismic hazard.
California Earthquake Rupture Model Satisfying Accepted Scaling Laws (SCEC 2010, 1-129) David Jackson, Yan Kagan and Qi Wang Department of Earth and Space.
Repeatable Path Effects on The Standard Deviation for Empirical Ground Motion Models Po-Shen Lin (Institute of geophysics, NCU) Chyi-Tyi Lee (Institute.
3-D ATTENUATION STRUCTURE FROM THE INVERSION OF MICROEARTHQUAKE PULSE WIDTH DATA: Inferences on the thermal state of the Campi Flegrei Caldera Aldo Zollo.
Probabilistic hazard analysis of earthquake-induced landslides – an example from Kuohsing, Taiwan Liao, Chi-Wen Industrial Technology Research Institute.
Alexandra Moshou, Panayotis Papadimitriou and Kostas Makropoulos MOMENT TENSOR DETERMINATION USING A NEW WAVEFORM INVERSION TECHNIQUE Department of Geophysics.
Gaetano Festa, Aldo Zollo, Simona Colombelli, Matteo Picozzi, Alessandro Caruso Dipartimento di Fisica; Università di Napoli Federico II.
Novel Approach to Strong Ground Motion Attenuation Modeling Vladimir Graizer U.S. Nuclear Regulatory Commission Erol Kalkan California Geological Survey.
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS ( Italy) Modeling techniques to study CO 2 -injection induced micro-seismicity by.
Site effect characterization of the Ulaanbaatar basin
Yelena Kropivnitskaya, Kristy F. Tiampo,
British Seismology Meeting 5th – 7th April 2017, Reading, UK
Finite-Source Models of the December 22, 2003 Mw6
Kinematic Modeling of the Denali Earthquake
Philip J. Maechling (SCEC) September 13, 2015
Principal Stress rotates to EW direction
Deterministic Seismic Hazard Analysis
Volume 88, Issue 3, Pages (November 2015)
by Asaf Inbal, Jean Paul Ampuero, and Robert W. Clayton
AMRA’s contribution to WP4
Presentation transcript:

WP 4: Real -Time Shake Maps GRSmap a tool for rapid estimation of ground-shaking maps for seismic emergency management in the Campania Region of southern Italy Convertito V. 1, De Matteis R. 2, Cantore L. 3, Caccavale M. 4, Zollo A. 4 and Iannaccone G. 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Napoli; 2 Dipartimento di Studi Geologici ed Ambientali Università degli Studi del Sannio, Benevento; 3 AMRA scarl, Napoli; 4 Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II Introduction In the present study, we illustrate a technique, named GRSmap, for rapid computation of ground-shaking maps after moderate-to-large earthquakes. It takes advantage of the high density of the Irpinia Seismic Network (ISNet) seismic stations and their wide dynamic ability to provide non-saturated, ground-motion measurements. The technique is based on an optimal data gridding scheme that uses triangulation, where the recording stations are the vertices of the triangles, aimed at reproducing the bi-dimensional feature of the ground-motion field due to focal mechanism, directivity etc.. The technique has been applied at two earthquakes: a simulated M 6.6 earthquake and the 23 November 1980 (M 6.9) earthquake. The results are finally validated by using a bootstrap like test while excluding an increasing number of stations (6, 10 and 14 stations) from the input dataset and re-computing the maps. Next, given the new maps, the peak ground acceleration and peak ground velocity data at points corresponding to the excluded stations were extrapolated from the maps and compared with the original input data. Geological macrozonation of the southern Apennines To allow for site amplification effects in the predicted ground-shaking maps following the approach proposed by Park and Ellrick (1998), a geological macro-zoning of the southern Apennines region was performed (Fig.1). The main geological units have been grouped based on age similarity, following the Quaternary-Volcanic-Tertiary-Mesozoic (QVTM) classification (Cantore et al., 2008). The corresponding corrective coefficients are those reported by Wald et al. (1999a), except for the volcanic lithology, for which a preliminary value of 1.25 has been assumed, based on geological information (Cantore et al., 2008). Ground-motion prediction in the southern Apennines To limit the effects of using attenuation relationships retrieved from dataset recorded in a different region, for the Campania-Lucania Region, Convertito et al. (2007) developed an ad-hoc regional ground-motion-attenuation relationship for the prediction of peak ground acceleration (Pga) and velocity (Pgv) values for moderate-to-large earthquakes. The coefficients were retrieved from an integrated observed and synthetic strong-motion database that was obtained using the stochastic approach proposed by Boore (1983). The selected prediction model has the following formulation: Pgxabch Pga (m/s 2 ) Pgv (m/s) Pga (m/s 2 ) * Pgv (m/s) * Where R corresponds to the epicentral distance in km, h is a fictious depth in km. The retrieved coefficients for both Pga and Pgv are listed in Table 3. Figure: 1:The QVTM site geological classification map. The labels indicate the locations of the ISNet seismic stations. Table 3: Regression coefficients and standard errors of the regional attenuation relationship used to compute the ground-shaking maps. Asterisks indicate the coefficients of the same attenuation relationships obtained without introducing the Pga and Pgv values of the 23 November 1980 Irpinia earthquake into the dataset. Figure 2: Validation of synthetic Pga (a) and Pgv (b) relative to the M 6.6 earthquake values. On each panel, the crosses represent the Pga and Pgv values retrieved from the synthetic waveforms simulated at the ISNet recording stations. Black lines on panels a and b refer to the median values of the Convertito et al. (2007) attenuation relationships, while dashed lines refer to 1. Panel c shows the same data when the minimum fault distance (Rjb) is taken into account. Black lines refer to Sabetta and Pugliese (1996) attenuation relationship, while grey lines refer to Akkar and Bommer (2007) attenuation relationship. Methodology outline for computation of the ground-shaking maps The outline of the GRSMap methodology can be schematically summarized as follows: Triangulation of the data domain: The recorded peak values are reduced to rock-site conditions by using the QVTM classification. The seismic stations are triangulated and the barycentre are identified and used as the phantom seismic stations. The maximum acceptable area of each triangle cannot exceed N A A ave, where N A is an integer that depends on the seismic network configuration, and A ave is the average area of all of the triangles. Areas exceeding a fixed threshold, are recursively triangulated and the new barycentres used as additional vertices. When the area is lower than the selected threshold value, at all of the new barycentres Pga and Pgv will be assigned using the equation (1) corrected by the average residual calculated on a fixed number of real seismic stations. The epicentre is considered as an additional station where the datum is estimated by equation (1) for R=0 km and corrected by an average residual, computed at a number of stations surrounding the epicentre below a distance value that depends on seismic network density. For an earthquake located outside of the data domain area, triangulation of the epicentral area is made denser and denser until a uniform station distribution is obtained. Extrapolation of peak motion in the external area The external area is covered with a uniform grid of phantom stations (Fig. 3a). Only those nodes of the grid located at distances larger than the threshold value from the closest recording station are retained for the extrapolation (Fig. 3a). At each retained node, Pga and Pgv are then predicted using equation (1), adding a mean residual weighted for the epicentral distance, computed at seismic stations with an azimuth with respect to the epicentre, comparable with that of the considered phantom station. Estimated and recorded data are then integrated onto 0.01 degree spaced map. Applications and resultsvalidation The technique GRSMap has been applied to two earthquakes: a simulated M 6.6 seismic event with data computed at the ISNet stations (left panels of Fig.4), and the 23 November 1980 Irpinia earthquake (M 6.9) recorded at a local seismic network (right panels of Fig.4).. Figure 3: (a) The main parameters of the triangulation scheme. Black triangles represent seismic stations, black circles the barycentres, and open circles the virtual stations (phantom stations). (b) The triangulation for ISNet. (c) The triangulation for the network at which the 1980 Irpinia earthquake (M 6.9) was recorded. Figure 4: Ground shaking maps. Figure 5: Results of the bootstrap test. The squares correspond to the residuals when the estimated data are retrieved from the maps using the interpolation procedure, while the gray circles correspond to the residuals obtained when the attenuation relationships are used to estimate the Pga and Pgv values. References - Boore D.M. (9183). Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra, Bull Seism Soc Am 73: Cantore L (2008). Determination of site amplification in the Campania-Lucania region (Southern Italy) by comparison of different site-response estimation techniques, Ph. D. Thesis, Dip. di Fisica, Università Federico II di Napoli - Cantore L., ConvertitoV., Zollo A. (2009). Development of a site conditions map for the Campania-Lucania region (Southern Apennines, Italy). Submitted to BEE - Convertito V., De Matteis R., Cantore L., Zollo A., Iannaccone G., Caccavale M. (2009). Rapid estimation of ground-shaking maps for seismic emergency management in the Campania Region of southern Italy. Natural hazards,, doi: /s Convertito V., De Matteis R., Romeo A., Zollo A., Iannaccone G. (2007) Strong motion relation for early-warning applications in the Campania Region (southern Apennines), Italy. In Gasparini et al (eds) Earthquake early warning systems, Berlino, Springer-Verlag - Wald D.J., Quitoriano V., Heaton T.H., Kanamori H., Scrivner C.W., Worden C.B. (1999a) TriNet shakemaps: rapid generation of instrumental ground motion and intensity maps for earthquakes in southern California, Earthquake Spectra 15: Final Meeting Potsdam, 3-5 June 2009