Chapter 11 Fluids. Density and Specific Gravity The density ρ of an object is its mass per unit volume: The SI unit for density is kg/m 3. Density is.

Slides:



Advertisements
Similar presentations
Chapter 9 Fluids.
Advertisements

Chapter 11 Fluids Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit.
Mass density ρ is the mass m divided by the volume v. ρ = m/v kg/m 3.
Liquids and Gasses Matter that “Flows”
Chapter 8 Forces in Fluids
Chapter 14 Fluid Mechanics.
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion.
Fluids Fluids are materials that can flow, gases and liquids. Air is the most common gas, and moves from place to place as wind. Water is the most familiar.
Lecture 8b – States of Matter Fluid Copyright © 2009 Pearson Education, Inc.
CHAPTER-14 Fluids. Ch 14-2, 3 Fluid Density and Pressure  Fluid: a substance that can flow  Density  of a fluid having a mass m and a volume V is given.
Chapter 9 Solids and Fluids
Chapter 14 Fluids Key contents Description of fluids
Chapter 9 Solids and Fluids. Solids Has definite volume Has definite volume Has definite shape Has definite shape Molecules are held in specific locations.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Unit 3 - FLUID MECHANICS.
Fluid Mechanics Chapter 10.
Fluid Mechanics Ellen Akers. Fluids A fluid is a substance that has the ability to flow and change its shape. Gases and liquids are both fluids. Liquids.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Chapter 14 PHYSICS 2048C Fluids. What Is a Fluid?  A fluid, in contrast to a solid, is a substance that can flow.  Fluids conform to the boundaries.
Chapter 10 Fluids.
Physics 1B03summer-Lecture 12 1 Day of Wrath Tuesday June 16 9:30-11:30 am CNH MC Questions, Cumulative.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Hydrostatics: Fluids at Rest. applying Newtonian principles to fluids hydrostatics—the study of stationary fluids in which all forces are in equilibrium.
Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas Physics Chapter 13.
Warm-up Pick up the free response at the door and begin working on it.
Static Fluids.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
A fluid is a state of matter in which the particles are free to move around one another. No definite shape exists. The term “fluid” encompasses liquids.
Warm-up For light of a given frequency, ice has an index of refraction of 1.31 and water has an index of refraction of Find the critical angle θ.
Fluids.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Solids & Fluids Relating Pressure to Solid & Fluid systems 01/30.
Chapter 11 Fluids.
Solids and Fluids Chapter 9. Phases of Matter  Solid – definite shape and volume  Liquid – definite volume but assumes the shape of its container 
1 Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas.
Chapter 14 Fluids What is a Fluid? A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container.
Physics Chapter 8 Fluid Mechanics
Chapter 9 Fluid Mechanics. Fluids “A nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or liquid.”
Introduction To Fluids. Density  = m/V  = m/V   : density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
CHAPTER 9 Solids and Fluids Fluid Mechanics (only) pages
Unit 6 : Part 1 Fluids.
Fluids. Introduction The 3 most common states of matter are: –Solid: fixed shape and size (fixed volume) –Liquid: takes the shape of the container and.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Chapter 14 Fluids.
Tuesday, November 30, 2010 Introducing Fluids Hydrostatic Pressure.
Forces in Fluids Chapter 13. Fluid Pressure  Section 13-1.
Copyright © 2015 John Wiley & Sons, Inc. All rights reserved. Chapter 11 Fluids.
Herriman High AP Physics 2 Chapter 9 Solids and Fluids.
FLUIDS A fluid is any substance that flows and conforms to the boundaries of its container. A fluid could be a gas or a liquid. An ideal fluid is assumed.
Fluids. Units of Chapter 10 Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle.
Introduction To Fluids. Density ρ = m/V ρ = m/V  ρ: density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Today (Chapter 10, Fluids)  Review for Exam 2 Tomorrow (Chapters 6-10)  Review Concepts from Tuesday  Continuity Equation  Bernoulli’s Equation  Applications/Examples.
Physics Chapter 9: Fluid Mechanics. Fluids  Fluids  Definition - Materials that Flow  Liquids  Definite Volume  Non-Compressible  Gasses  No Definite.
Ying Yi PhD Chapter 11 Fluids 1 PHYS HCC. Outline PHYS HCC 2 Density and Pressure Pressure and Depth in a Static fluid Buoyant Forces and Archimedes’
Chapter 10 Fluids Pressure in Fluids Pressure is defined as the force per unit area. Pressure is a scalar; the units of pressure in the SI system.
Chapter 11 Fluids.
College Physics, 7th Edition
Chapter 11 Fluids.
Relating Pressure to Solid & Fluid systems
Fluid Mechanics Presentation on FLUID STATICS BY Group:
Chapter 11 Fluids.
Chapter 14 Fluids.
Physics 21.
Fluids Liquids and Gases Chapter 11.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 14 Fluid Mechanics.
Chapter 11 Fluids.
Chapter 11 Fluids.
Presentation transcript:

Chapter 11 Fluids

Density and Specific Gravity The density ρ of an object is its mass per unit volume: The SI unit for density is kg/m 3. Density is also sometimes given in g/cm 3 ; to convert g/cm 3 to kg/m 3, multiply by Water at 4°C has a density of 1 g/cm 3 = 1000 kg/m 3. The specific gravity of a substance is the ratio of its density to that of water. (10-1)

Pressure in Fluids Pressure is defined as the force per unit area. Pressure is a scalar; the units of pressure in the SI system are pascals: 1 Pa = 1 N/m 2 Pressure is the same in every direction in a fluid at a given depth; if it were not, the fluid would flow.

Atmospheric Pressure and Gauge Pressure At sea level the atmospheric pressure is about this is called one atmosphere (atm). 1 atm = 14.7psi = 760 torr = 760mm Hg Another unit of pressure is the bar: Standard atmospheric pressure is just over 1 bar. This pressure does not crush us, as our cells maintain an internal pressure that balances it.

Pressure at a Depth P = F = mg = ρVg = ρAhg = ρhg A A A A 330 m Find the pressure on the bottom of the submarine due to the water above it. Find the pressure on the bottom of the submarine due to the water And air above it.

10-4 Atmospheric Pressure and Gauge Pressure Most pressure gauges measure the pressure above the atmospheric pressure – this is called the gauge pressure. The absolute pressure is the sum of the atmospheric pressure and the gauge pressure.

Archimedes’s Principle Any object completely or partially submerged in a fluid is buoyed up by a force whose magnitude is equal to the weight of the fluid displaced by the object.

Buoyant Force The upward force is called the buoyant force The physical cause of the buoyant force is the pressure difference between the top and the bottom of the object

11.6 Archimedes’ Principle

Buoyant Force, cont. The magnitude of the buoyant force always equals the weight of the displaced fluid For a floating object, the buoyancy force must equal the weight of the object. B = W Some objects may float high or low

Example: A balloon having a volume of 1.5 cubic meters is filled with ethyl alcohol and is tethered to the bottom of a swimming pool. Calculate the tension in the cord tethering it to the bottom of the swimming pool.  Fy = B – T – W = 0 Therefore, T = B – W T =  water Vg –  alcohol Vg T = (  water –  alcohol )Vg T = (1000kg/m 3 – 806kg/m 3 ) (1.5m 3 )(9.8m/s 2 ) T = N B TW FBD

11.6 Archimedes’ Principle Example 9 A Swimming Raft The raft is made of solid square pinewood. Determine whether the raft floats in water and if so, how much of the raft is beneath the surface.

11.6 Archimedes’ Principle

The raft floats!

11.6 Archimedes’ Principle If the raft is floating:

11.5 Pascal’s Principle PASCAL’S PRINCIPLE Any change in the pressure applied to a completely enclosed fluid is transmitted undiminished to all parts of the fluid and enclosing walls.

11.5 Pascal’s Principle

Example 7 A Car Lift The input piston has a radius of m and the output plunger has a radius of m. The combined weight of the car and the plunger is N. Suppose that the input piston has a negligible weight and the bottom surfaces of the piston and plunger are at the same level. What is the required input force?

11.5 Pascal’s Principle

11.8 The Equation of Continuity The mass of fluid per second that flows through a tube is called the mass flow rate.

11.8 The Equation of Continuity

EQUATION OF CONTINUITY The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow. SI Unit of Mass Flow Rate: kg/s

11.8 The Equation of Continuity Incompressible fluid: Volume flow rate Q:

11.8 The Equation of Continuity Example 12 A Garden Hose A garden hose has an unobstructed opening with a cross sectional area of 2.85x10 -4 m 2. It fills a bucket with a volume of 8.00x10 -3 m 3 in 30 seconds. Find the speed of the water that leaves the hose through (a) the unobstructed opening and (b) an obstructed opening with half as much area.

11.8 The Equation of Continuity (a) (b)

Bernoulli’s Equation Relates pressure to fluid speed and elevation Bernoulli’s equation is a consequence of Conservation of Energy applied to an ideal fluid Assumes the fluid is incompressible and nonviscous, and flows in a nonturbulent, steady-state manner

Bernoulli’s Equation, cont. States that the sum of the pressure, kinetic energy per unit volume, and the potential energy per unit volume has the same value at all points along a streamline

Example: Water is contained in a tank. The water level is 5 meters above a hole in the tank where water exits through a hole to the atmosphere as shown below. The diameter of the hole is 0.01 meters, and the diameter of the tank is 3 meters. The tank is open to atmosphere. Calculate the velocity of the water exiting the tank. The pressure at the top of the tank is equal to the pressure at the exit since they are both open to atmosphere. Therefore P t and P e cancel out. Since the tank diameter is so much larger than the exit hole, the velocity of the water level drop can be approximated as zero. The exit height is taken as zero, therefore y e = 0 The equation above reduces to: Where y t =h v e = 9.9m/s

How Airplanes Wings Work