2006-01-07Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Neutrino Astroparticle Physics
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Neutrino astronomy with Antares Aart Heijboer. Research to fundamental building blocks of matter Research on the Universe using those particles.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
George W.S. Hou & M.A. Huang Center for Cosmology and Particle Astrophysics Department of Physics, National Taiwan University, 1, Sec. 4, Roosevelt Rd.,Taipei,
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
IAU Sydney Per Olof Hulth Particle Astronomy from Antarctica Per Olof Hulth Stockholm University.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
Sayfa 1 EP228 Particle Physics Department of Engineering Physics University of Gaziantep Dec 2014 Topic 5 Cosmic Connection Course web page
Ice-fishing for Cosmic Neutrinos Subhendu Rakshit TIFR, Mumbai.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Neutrino Point Sources (Looking for) (with Underground Detectors) THE HIGTE ST ENERGY COSMIC RAYS AND THEIR SOURCES: Moscow May 21-23, 2004 S.P. Mikheyev.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
con i neutrini1 Showering Neutrino Astronomies at Horizons.
Particle Physics: Status and Perspectives Part 7: Neutrinos Manfred Jeitler.
Introduction to the High Energy Astrophysics Introductory lecture.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
1 Upsilon production and decay to UHECR neutrinos from GRB and AGN associated with strong magnetic field International Workshop on Heavy Quarkonia 2008.
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
PHY418 Particle Astrophysics
NOY TAZA Neutrino Observatory Project in TAZA A. Hoummada University HASSAN II CASABLANCA On behalf of NOY collaboration D. Lebrun & F. Montanet LPSC -
Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Search for a Diffuse Flux of TeV to PeV Muon Neutrinos with AMANDA-II Detecting Neutrinos with AMANDA / IceCube Backgrounds for the Diffuse Analysis Why.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
Astroparticle Physics (3/3)
Mumbai, 8/26/2011 Lepton-Photon 2011 Tom Gaisser1 High energy neutrinos Review of results from IceCube (including IceTop), Antares, Baikal & ANITA.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Italy Pizza, Mozzarella di Buffala Switzerland Roesti, Cheese Fondue
Imaging the Neutrino Universe with AMANDA and IceCube
Imaging the High-Energy Neutrino Universe from the South Pole
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Theoretical status of high energy cosmic rays and neutrinos
Pierre Auger Observatory Present and Future
Building ICECUBE A Neutrino Telescope at the South Pole
Building ICECUBE A Neutrino Telescope at the South Pole
08/27/04 Strategies for the search for prompt muons in the downgoing
Brennan Hughey for the IceCube Collaboration
Search for Dark Matter physics 805 fall 2008.
Neutrinos as probes of ultra-high energy astrophysical phenomena
Brennan Hughey for the IceCube Collaboration
Unfolding performance Data - Monte Carlo comparison
Predictions of Ultra - High Energy Neutrino fluxes
Presentation transcript:

Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University

Spåtind Norway P.O.Hulth Neutrino sky 5-40 MeV

Spåtind Norway P.O.Hulth Neutrino sky > 1 GeV Nothing seen so far…….

Spåtind Norway P.O.Hulth Outline Lecture 1 –Why do we expect to see cosmic neutrinos? Cosmic rays Dark matter –Neutrino detection principles Lecture 2 –Running High Energy Neutrino telescopes Some physics results –Near future telescopes

Spåtind Norway P.O.Hulth Why Neutrino Astronomy? Origin of High Energy cosmic rays Particle acceleration mechanisms in astrophysical sources Dark matter properties Neutrino properties The unknown, a new window to the universe!

Spåtind Norway P.O.Hulth   +  CMB -> e + + e - p+  CMB ->  + ->n+     +  GZK - neutrinos (Greisen, Zatsepin, Kusmin) P. Gorham Universe is not transparent for HE photons or nuclei! Protons deflected by magnetic field in space for E < eV! Not pointing back to the source!

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth photonselectrons/positrons muonsneutrons

Spåtind Norway P.O.Hulth photonselectrons/positrons muonsneutrons In the same time also atmospheric neutrinos from meson and muon decays!!

Spåtind Norway P.O.Hulth LHC ~E -2.7 ~E -3 Ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser The accelerators? Nature accelerates particles 10 7 times the energy of LHC! What are the sources? Cosmic rays

Spåtind Norway P.O.Hulth The size of the Universe “LHC” accelerator? R To use LHC magnets to deliver eV we need a radius of the accelerator to be about 1.5 times the distance Earth -Sun

Spåtind Norway P.O.Hulth Galactic sources Supernova are assumed to be able to accelerate particles up eV But the observed gammas could have electromagnetic orgin and not hadronic. If gammas are from  0 decays you expect about the same flux of neutrinos! Microquasar HESS gamma flux

Spåtind Norway P.O.Hulth Very High Energy Gamma sources

Spåtind Norway P.O.Hulth Ultra High Energy Cosmic Rays UHECR are assumed to be extra galactic There are still uncertainties about flux. No obvious sources for the particles > eV within 20 Mpc…? GZK effect observed? Shigeru Yoshida, ICRC 2005, Pune

Spåtind Norway P.O.Hulth Possible sources of UHE Cosmic Rays

Spåtind Norway P.O.Hulth Active galaxies Galaxy 3C296

Spåtind Norway P.O.Hulth Gamma Ray Bursts Cosmological sources!! But what is it?? Source 9000 Million light years away!

Spåtind Norway P.O.Hulth Gamma Ray Burst ?

Spåtind Norway P.O.Hulth We expect to have neutrinos produced when the accelerated UHECR collides with matter or light in the vicinity of the source! Detect the neutrinos!

Spåtind Norway P.O.Hulth Observing neutrinos Fermi acceleration of protons gives particle spectrum dN p /dE~ E -2 Neutrino production at source: p+  or p+p collisions gives pions       e - +   e Neutrino flavors: e :  :  1:2:~0 at source 1:1:1 at detector (?)

Spåtind Norway P.O.Hulth NGC 2300

Spåtind Norway P.O.Hulth Dark matter search There exists about 5 times more dark matter in the universe than our baryonic matter “Best” dark matter candidate: neutralino Neutralinos are trapped in large objects like the Sun and Earth and self- annihilate. Search for neutrinos from the centers of Earth and Sun See talks by Thomas Burgess and Gustav Wikström today

Spåtind Norway P.O.Hulth Neutrino Astronomy + Neutrinos penetrate the whole Universe + Neutrinos direction points back to the source + Neutrinos are produced at the sources of the cosmic rays + Neutrinos are not reprocessed at the sources + Neutrinos expected from dark matter particle annihilation - Low expected flux of extragalactic neutrinos - Small cross section - Needs gigantic detector volumes

Spåtind Norway P.O.Hulth Backgrounds Atmospheric muons –Produced in cosmic ray interactions above the telescope. In AMANDA there are 10 6 downward going atmospheric muons for every upward going atmospheric neutrino induced muon -> select only upward going muons as neutrino candidates. The Earth acts as a filter. Atmospheric neutrinos

Spåtind Norway P.O.Hulth log [E 2 · flux(E ) / GeV cm -2 s -1 sr -1 ] atmospheric log (E /GeV) 67 AGN core (SS) AGN Jet (MPR) GRB (WB) WB bound GZK Required sensitivity many specific models for non-resolved sources...  Waxman, Bahcall (1999) derive generic limits from  limits on extragalactic p‘s   -ray flux... for discovering extraterrestrial neutrinos TeV PeV EeV E -2 flux 50 events/year/km 2

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth MeV GeV Tev PeV EeV Different energy range for detectors Underground Optical Cherenkov deep in water and ice Radio, acoustic, air showers

Spåtind Norway P.O.Hulth Neutrino interactions in ice and water   The muon can travel several km in e.g. ice < 1 degree           eV e    Hadronic shower length logE (10th of metres) CC Charge Current NC Neutral Current

Spåtind Norway P.O.Hulth 275 GeV muon neutrino interaction in BEBC 1 m 

Spåtind Norway P.O.Hulth Muon range in ice Muon propagator: MMC, Chirkin, D. 27th ICRC, HE 220, Hamburg 2001 The muon starts to loose energy above 500 GeV to pair production, bremstrahlung The muon will be dressed up by many e + and e -. More Cherenkov light!

Spåtind Norway P.O.Hulth e   low energy) “Cascades” Length of cascades 10th of meters (L prop. logE) Neutrino interactions in ice and water CC Charge Current

Spåtind Norway P.O.Hulth e   high energy) “Cascades” Length of cascades 10th of meters (L prop. logE) Neutrino interactions in ice and water CC Charge Current 

Spåtind Norway P.O.Hulth Neutrino cross-section For E  < 10 4 GeV the x-section rises linearly with the energy For E  > 10 4 GeV (due to the W-boson propagator: Cross-section measured up to 300 GeV. Up to about 10 TeV based on structure functions from HERA. Above different extrapolations.

Spåtind Norway P.O.Hulth Cross-section larger in e.g.  -BH models Standard Model Strings  (mb) Micro black holes

Spåtind Norway P.O.Hulth Shadowing effect of the Earth

Spåtind Norway P.O.Hulth PeV acceptance around horizon EeV acceptance above horizon Shadowing effect of the Earth

Spåtind Norway P.O.Hulth AMANDA-B10 efficiency for UHE neutrinos up E -2 neutrino flux eV -> eV

Spåtind Norway P.O.Hulth But for  neutrinos the earth is transparent…    The tau neutrino will degrade in energy due to interactions in the Earth but will continue through.

Spåtind Norway P.O.Hulth The y-distributions 0 y 1.0 NN (1-y) 2 Muon energy is harder in antineutrino interactions! hadrons muon y = (E had - M N )/E

Spåtind Norway P.O.Hulth y = E hadrons /E  lepton = (1-y)E

Spåtind Norway P.O.Hulth Z-bursts From Big Bang there should be about 330 neutrinos/cm 3 with an average energy of eV The ultimate neutrino experiment to detect these….    CNB -> Z 0 -> decays This process has been proposed to explain the UHECR events. But you need a neutrino with eV energy..

Spåtind Norway P.O.Hulth up/down energy direction time Atmospheric  X Diffuse neutrinos XX Point sources; AGN, XXX WIMPS GRB XXX X Reconstruction handles X XX X XX XXXX

Spåtind Norway P.O.Hulth Optical Cherenkov detection

Spåtind Norway P.O.Hulth Detection principle O(km) long muon tracks direction determination by Cherenkov light timing  15 m O(10m) Cascades, e  Neutral Current

Spåtind Norway P.O.Hulth neutrino muon Cherenkov light cone Detector interaction The muon radiates blue light in its wake Optical sensors capture (and map) the light

Spåtind Norway P.O.Hulth Neutrino interaction in AMANDA

Spåtind Norway P.O.Hulth Acoustic Detection

Spåtind Norway P.O.Hulth d R Particle cascade  ionization  heat  pressure wave P t 50  s Attenuation length of sea water at kHz: a few km (light: a few tens of meters) → given a large initial signal, huge detection volumes can be achieved. Threshold > 10 PeV Maximum of emission at ~ 20 kHz C. Spiering

Spåtind Norway P.O.Hulth Radio Detection

Spåtind Norway P.O.Hulth e + n  p + e - e - ... cascade  relativist. pancake ~ 1cm thick,  ~10cm  each particle emits Cherenkov radiation  C signal is resultant of overlapping Cherenkov cones  for >> 10 cm (radio) coherence  C-signal ~ E 2 nsec negative charge is sweeped into developing shower, which acquires a negative net charge Q net ~ 0.25 E cascade (GeV). Threshold > 10 PeV C. Spiering

Spåtind Norway P.O.Hulth The Future We should be optimistic ! New York Times, December 29, 1932 Robert A. Millikan From S. Westerhoff, Lepton Photon 2005

Spåtind Norway P.O.Hulth Since we are in Norway. And that the point of gravity for High Energy Neutrino telescopes is at the South Pole which I will talk about tomorrow morning… A short historical comment.

Spåtind Norway P.O.Hulth Sydpolsfarare då och nu Övervintra vid kusten

Spåtind Norway P.O.Hulth Sydpolsfarare då och nu Tre timmars flyg från kusten

Spåtind Norway P.O.Hulth Sydpolen december 1911

Spåtind Norway P.O.Hulth Sydpolen januari 1912

Spåtind Norway P.O.Hulth Sydpolen november 2003

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth

Spåtind Norway P.O.Hulth Joakim Edsjö SU

Spåtind Norway P.O.Hulth