NSTX S. A. Sabbagh 1, M.G. Bell 2, R.E. Bell 2, L. L. Lao 3, B.P. LeBlanc 2, F.M. Levinton 4, J.E. Menard 2, C. Zhang 5 Reconstruction of NSTX Equilibria.

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
E.D. Fredrickson, a W.W. Heidbrink, b C.Z. Cheng, a N.N. Gorelenkov, a E. Belova, a A.W. Hyatt, c G.J. Kramer, a J. Manickam, a J. Menard, a R. Nazikian,
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
J. Manickam, C. Kessel and J. Menard Princeton Plasma Physics Laboratory Special thanks to R. Maingi, ORNL and S. Sabbagh, Columbia U. 45 th Annual Meeting.
J.R. Wilson, R.E. Bell, S. Bernabei, T. Biewer, J. C. Hosea, B. LeBlanc, M. Ono, C. K. Phillips Princeton Plasma Physics Laboratory P. Ryan, D.W Swain.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
XP1518: RWM PID control optimization based on theory and experiment S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al…) Department of Applied Physics,
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
Prototype Multi-Energy Soft X-ray Diagnostic for EAST Kevin Tritz Johns Hopkins University NSTX-U Monday Physics Meeting PPPL, Princeton, NJ June 25 th,
Beam Ion Profiles with the SSNPA Diagnostic Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
NSTX MHD Mode Control Mtg S.A. Sabbagh 1 RWM Stabilization and Control Research on NSTX S.A. Sabbagh 1, J.M. Bialek 1, R.E. Bell 2, D.A. Gates 2,
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
NSTX-Upgrade Magnetics And Related Diagnostics SPG NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
SMK – IAEA ‘041 Stanley M. Kaye for the NSTX Research Team PPPL, Princeton University, U.S.A. 20 th IAEA Fusion Energy Conference Vilamoura, Portugal November.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Stanley M. Kaye PPPL, Princeton University R. Bell, C. Bourdelle, B. LeBlanc, S. Paul, M. Redi, S. Sabbagh, D. Stutman APS-DPP Meeting Albuquerque, N.M.
NSTX Electron Bernstein Wave Research - Taylor 1 of 8 Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
1 Status of the 2008 ASC TSG Run plan Presented by D. A. Gates (J. Menard Deputy) At the NSTX Mid-run asessment PPPL April 16, 2008 Supported by Office.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
GO : Progress toward fully non-inductive operation in NSTX Jonathan Menard, PPPL For the NSTX Team 47 th Annual Meeting of the DPP Monday–Friday,
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
Presentation transcript:

NSTX S. A. Sabbagh 1, M.G. Bell 2, R.E. Bell 2, L. L. Lao 3, B.P. LeBlanc 2, F.M. Levinton 4, J.E. Menard 2, C. Zhang 5 Reconstruction of NSTX Equilibria including MSE data Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 2 Plasma Physics Laboratory, Princeton University, Princeton, NJ 3 General Atomics, San Diego, CA 4 Nova Photonics, Inc., Princeton, NJ 5 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China 17 th NSTX Program Advisory Committee Meeting January , 2005 Princeton Plasma Physics Laboratory

NSTX Approach  “Best” model for a given physics model / data set, reliably fit all data within error improved physics/data set reduces artificial constraint  “Rapid” reconstruction between-shots find one constraint set for a given (data,model)  “Levels” of reconstruction based on available data seamlessly switch levels during shot if needed data physics model basic advanced magnetics kinetic profiles rotation profile B pitch angle profile Motional Stark Effect data is a natural addition to NSTX EFIT reconstructions rotating plasma 3-D effects vessel currents plasma current vacuum

NSTX MSE can be included in all levels of EFIT NSTX EFIT “Levels”  Level 1: external magnetics data alone  Level 2: partial kinetic profile data added  Level 3: toroidal rotation added Statistics on MSE fits so far:  Four channels span typical magnetic axis position; 0.3 degree error  MSE data for 58 shots available on data tree  All 58 shots reconstructed with NSTX EFIT and written to NSTX database More than 7,500 equilibria available to the group More than 11,000 equilibria run in MSE testing so far fitted parameters artificial constraints 4strong 103 weak 20none

NSTX Physics constraintsData points  Internal magnetic field pitch angle (MSE)4  Plasma rotational pressure (CHERS)51  Flux surfaces are electron temperature isotherms20 T e = T e (  (R)| z=0 ) directly from Thomson data - rapid analysis  required to insure self-consistent solution with toroidal rotation  Plasma kinetic pressure Ion pressure (CHERS)51 Electron pressure (Thomson)20  External magnetics / plasma current119  Plasma diamagnetism1  Vacuum vessel current (includes “3-D” vessel effects)25  Shaping coil / TF currents9 MSE data adds further constraint to present rotating, high  ST equilibrium reconstructions Total (per time point)300

NSTX B field pitch angle profile added to reconstruction P kinetic (kPa) P dynamic (kPa) Poloidal flux and pressure Z(m) R(m) R(m) R(m)  isotherm constraint (mWb/rad*10) magnetic axis t=0.257s magnetic axis R(m) Pitch angle (rad) vs. R MSE data peak pressure

NSTX Fits with / without MSE confirm high  results Few % change in stored energy Fits without MSE give good q 0 values  “calibrated” constraint set (using sawtooth onset, rational surface position from USXR in selected shots)  can now use MSE for “calibration” Correlation with crossing q 0 = 1 and  collapse I p (MA)  t (%) R axis (m) q0q0 q min 22 MSE data available solid (red) – with MSE dashed (black) – w/o MSE Partial kinetic fits MSE data starts

NSTX Fitted pitch angle evolution follows MSE data Pitch angle (rad) R = mR = m R = mR = 1.10 m t(s) t(s) t(s) t(s) Fit

NSTX MSE finds q 0 ~ 1 in plasmas with sawteeth External magnetics- only fit has q 0 = 1.1 Partial kinetic fit does not give q 0 ~ 1 at low stored energy  MSE required to find reasonable q 0 I p (MA)  t (%) USXR (arb) q0q0 q min 22 solid (red) – with MSE dashed (black) – w/o MSE MSE data available Partial kinetic fits

NSTX MSE fits indicate shear reversal in some equilibria Shear reversal not seen in reconstruction for this shot without MSE Shear reversal not apparent in l i evolution Collapse in  when q 0 = 2, q min = 1.5 I p (MA)  t (%) lili q0q0 q min 22 q MSE data available NBI (4 MW)

NSTX CY05 MSE channels will provide additional q constraint t = s span of present MSE data Pitch angle (rad) vs. R q R(m) Present MSE measurements do not span q min position in shear reversed equilibrium R(m) MSE data EFIT reconstruction planned channels

NSTX Diagnostic input / code interaction continues to expand Add new MSE channels  8 channels start of FY05 run  Up to 14 channels by end of FY05 run Include computed fast-ion profiles directly from TRANSP  Understand possible role of MHD on fast-ion diffusion/loss  Include beam pressure anisotropy and flow of fast ions Use EFIT to help benchmark other reconstruction codes  LRDFIT: time-evolved circuit model of vessel included in fit Reconstruction of 20kA PF-only start-up plasmas  ESC: reconstruction version built around fixed-boundary code Used on JET for current holes, being developed for CDX-U (LTX)

NSTX NSTX EFIT with MSE is ready for the 2005 run Pre-run testing / analysis  Greater basis function flexibility, constraint optimization  Radial electric field correction to MSE data (using toroidal flow)  Further consistency checks with other diagnostics  More tests of rotating equilibria – comparison to static case  Physics analysis effects of reversed shear low-order rational surfaces and  collapse Between-shots EFIT reconstructions with MSE will improve analysis including present control room MHD stability calculations

NSTX Supporting slides follow

NSTX Expanded magnetics set reproduces 3-D eddy currents as axisymmetric currents during OH ramp VALEN (J. Bialek)  plate eddy currents I v (kA) t(s) t(s) Black points: plate current approximated from V loop sensors Solid lines: EFIT reconstructed plate currents using all magnetics data  Fitted currents match 3-D eddy currents as a 2-D analog

NSTX External magnetics data allow basic reconstruction Over 60 attempted variations to find model Profile constraints: p’(0) = 0, (ff’)’(1) = 0  constraints reproduce q 0 = 1 appearance, rational surface position from USXR  allows finite edge current (to model current transients) 4 profile variables (1 p’, 3 ff’; 2 nd order polynomial in p’, 3 rd order in ff’) Goodness of fit  2 ~ 70 over majority of pulse for 108 measurements 0.2 t(s) I p (MA)  t (%) lili   2 (P NBI = 7 MW)  t = 2  0 / B 0 2

NSTX “Partial kinetic” prescription reduces artificial constraint Over 110 attempted model variations used to find model 10 profile variables (5 p’, 5 ff’); allows finite edge current External magnetics plus 20 Thomson scattering P e points to constrain P profile shape  P tot = P e + “P i ” + “P fast ”; errors summed in quadrature (large total error) Diamagnetic flux to constrain stored energy  Greater freedom in ff’ basis function for good fit over full discharge evolution and for various shots Weak constraints on p’(0), ff’(0) yield “reasonable” q(0) t = 0.445s R(m) P tot (kPa) R(m) Z(m) t = 0.445s “partial kinetic” assigned error

NSTX NSTX EFIT* alterations required for low A geometry Uniform discretization of elements at low aspect ratio Vessel currents required  Lower A components have lower resistance  Total vessel currents ~ 0.3 MA; plasma current ~ 1.0 MA  Vessel / plates broken into 30 groups (poloidally)  Wall currents determined by local loop voltage data (9 loops)  Vessel element resistances matched against independent model of vacuum field shots Stabilizing plates / divertor plates included (~5 kA)  plate currents not well-diagnosed * S.A. Sabbagh, et al., Nucl. Fus. 41 (2001) flux loops / voltage monitors pickup coils R(m) Z(m) stabilizing plates initial diagnostics

NSTX Expanded magnetics to yield more accurate X-point and plate currents Significant upgrade to magnetics set  57 pickup coils vs. 23  25 local loop voltage data vs. 9 for wall current distribution  Compensation for stray field from TF leads Stabilizing plates / divertor plates currents now better resolved new pickup coils (tangential and normal) R(m) Z(m) CY 2004 diagnostics

NSTX Pure toroidal flow allows a tractable equilibrium solution Solve , ,  R components of equilibrium equation  MHD:  v  v = JxB –  p ;  = mass density  f(  ) = RB t  R  2P d ( ,R)/R = p’( ,R)|  ; P d   ( ,R)  2 (  )R 2 /2 (Bernoulli eq.)  *  = -  0 R 2 p’( ,R)| R -  0 2 ff’(  )/(4  2 ) (G.S. analog)  Pure toroidal rotation and T = T(  ) yields simple solution for p p( ,R) = p 0 (  ) exp (m fluid  2 (  )(R 2 – R t 2 )/2T(  )) Constraints for fit  EFIT reconstructs two new flux functions: P w (  ), P 0 (  ) P w (  )   (  ) R t 2  2 (  )/2;P 0 (  ) defined so that: p( ,R) = P 0 (  ) exp (P w (  )/P 0 (  ) (R 2 – R t 2 )/ R t 2 )  Standard input: P w (  ), P 0 (  ) from approximation or transport code  New approach: Solve for P w (  ), P 0 (  ) in terms of measured P( ,R)| z=0, P d ( ,R)| z=0