KMMCS, Jan. 2006, Spline Methods in CAGD, Spline Methods in CAGD byung-gook lee Dongseo Univ.

Slides:



Advertisements
Similar presentations
Bézier Curves: Integrating Math, Arts and Technology Jomar F. Rabajante UPLB.
Advertisements

Computer Graphics (Spring 2008) COMS 4160, Lecture 6: Curves 1
09/25/02 Dinesh Manocha, COMP258 Triangular Bezier Patches Natural generalization to Bezier curves Triangles are a simplex: Any polygon can be decomposed.
Overview June 9- B-Spline Curves June 16- NURBS Curves June 30- B-Spline Surfaces.
© University of Wisconsin, CS559 Spring 2004
Jehee Lee Seoul National University
1 Introduction Curve Modelling Jack van Wijk TU Eindhoven.
KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., Spline Methods in CAGD Lee Byung-Gook Dongseo Univ.
If this (...) leaves you a bit wondering what multivariate splines might be, I am pleased. For I don’t know myself. Carl de Boor.
3D Modeling Topics Gerald Farin Computer Science PRISM: Partnership for Research In Spatial Modeling ASU.
CS CS 175 – Week 9 B-Splines Blossoming, Bézier Splines.
CS CS 175 – Week 9 B-Splines Definition, Algorithms.
Spline Interpretation ABC Introduction and outline Based mostly on Wikipedia.
09/04/02 Dinesh Manocha, COMP258 Bezier Curves Interpolating curve Polynomial or rational parametrization using Bernstein basis functions Use of control.
CS CS 175 – Week 8 Bézier Curves Definition, Algorithms.
Bivariate B-spline Outline Multivariate B-spline [Neamtu 04] Computation of high order Voronoi diagram Interpolation with B-spline.
Modeling of curves Needs a ways of representing curves: Reproducible - the representation should give the same curve every time; Computationally Quick;
09/09/02 Dinesh Manocha, COMP258 Properties of Bezier Curves Invariance under affine parameter transformation P i B i,n (u) = P i B i,n ((u –a)/(b-a))
Normal based subdivision scheme for curve and surface design 杨勋年
Geometric Modeling Surfaces Mortenson Chapter 6 and Angel Chapter 9.
1 Dr. Scott Schaefer Tensor-Product Surfaces. 2/64 Smooth Surfaces Lagrange Surfaces  Interpolating sets of curves Bezier Surfaces B-spline Surfaces.
Cubic Bezier and B-Spline Curves
Curves Mortenson Chapter 2-5 and Angel Chapter 9
1 Dr. Scott Schaefer Catmull-Rom Splines: Combining B-splines and Interpolation.
Bezier and Spline Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
Bezier and Spline Curves and Surfaces CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
Splines III – Bézier Curves
Graphics Programming, Byung-Gook Lee, Dongseo Univ., Graphics Programming Byung-Gook Lee Dongseo Univ.
Engineering Research Center for Computer Integrated Surgical Systems and Technology Fall 2000; Updated: 12 September 2015 Copyright © R. H. Taylor.
A D V A N C E D C O M P U T E R G R A P H I C S CMSC 635 January 15, 2013 Spline curves 1/23 Curves and Surfaces.
The Forum of IMS in Ewha Univ. May , Byung-Gook Lee, Dongseo Univ., Mathematics in Computer Graphics Byung-Gook Lee Dongseo.
(Spline, Bezier, B-Spline)
V. Space Curves Types of curves Explicit Implicit Parametric.
Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Intelligent Engineering Systems Lecture 3. Description.
1 Dr. Scott Schaefer Smooth Curves. 2/109 Smooth Curves Interpolation  Interpolation through Linear Algebra  Lagrange interpolation Bezier curves B-spline.
1 Dr. Scott Schaefer Blossoming and B-splines. 2/105 Blossoms/Polar Forms A blossom b(t 1,t 2,…,t n ) of a polynomial p(t) is a multivariate function.
Seminar on B-Spline over triangular domain Reporter: Gang Xu Institute of Computer Images and Graphics, Math Dept. ZJU October 26.
Splines Vida Movahedi January 2007.
University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell Parametric Curves.
Splines IV – B-spline Curves based on: Michael Gleicher: Curves, chapter 15 in Fundamentals of Computer Graphics, 3 rd ed. (Shirley & Marschner) Slides.
Computer Graphics Representing Curves and Surfaces.
On the degree elevation of B-spline curves and corner cutting Guozhao Wang,Chongyang Deng Reporter : Jingjing Yu.
Geometric Modelling 2 INFO410 & INFO350 S Jack Pinches
Keyframing and Splines Jehee Lee Seoul National University.
Lee Byung-Gook Dongseo Univ.
Mathematical Methods in Computer Graphics, Duksung Univ. Nov , Mathematical Methods in Computer Graphics Byung-Gook Lee Dongseo.
Curves: ch 4 of McConnell General problem with constructing curves: how to create curves that are “smooth” CAD problem Curves could be composed of segments.
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Parametric Curves & Surfaces Greg Humphreys University of Virginia CS 445, Spring.
Computer Graphics (Fall 2003) COMS 4160, Lecture 10: Curves 1 Ravi Ramamoorthi
11/26/02(C) University of Wisconsin Last Time BSplines.
Parametric Curves CS 318 Interactive Computer Graphics John C. Hart.
Splines Sang Il Park Sejong University. Particle Motion A curve in 3-dimensional space World coordinates.
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 12: Curves 1
Graphics Programming 2003, Lee Byung-Gook, Dongseo Univ., Graphics Programming Lee Byung-Gook Dongseo Univ.
SIAM Conference on Geometric Desing & Computing Approximation of spatial data with shape constraints Maria Lucia Sampoli University of Siena, Italy.
CS552: Computer Graphics Lecture 19: Bezier Curves.
B(asis)-Splines Ashish Myles CISE, UF. Splines ● Piecewise polynomial ● More flexible than single polynomials – can have finite support – can be periodic.
Graphics Programming 2003, Lee Byung-Gook, Dongseo Univ., Graphics Programming Lee Byung-Gook Dongseo Univ.
© University of Wisconsin, CS559 Spring 2004
CSE 167 [Win 17], Lecture 9: Curves 1 Ravi Ramamoorthi
Parametric Curves.
© University of Wisconsin, CS559 Fall 2004
© University of Wisconsin, CS559 Spring 2004
The Variety of Subdivision Schemes
Lee Byung-Gook Dongseo Univ.
PPT3: B-spline Curves and Surfaces
Computer Aided Geometric Design
Introduction to Parametric Curve and Surface Modeling
Overview June 9- B-Spline Curves June 16- NURBS Curves
Presentation transcript:

KMMCS, Jan. 2006, Spline Methods in CAGD, Spline Methods in CAGD byung-gook lee Dongseo Univ.

KMMCS, Jan. 2006, Spline Methods in CAGD, Contents Affine combination Lagrange Bezier Spline B-spline E-spline Box-spline Refinement relation Cross-sectional volumes Subdivision schemes Reference “ Spline Methods Draft ” Spline Methods Draft Tom Lyche and Knut Morken “ Subdivision Methods for Geometric Design: A Constructive Approach ” Joe Warren and Henrik Weimer Reference “ Spline Methods Draft ” Spline Methods Draft Tom Lyche and Knut Morken “ Subdivision Methods for Geometric Design: A Constructive Approach ” Joe Warren and Henrik Weimer

KMMCS, Jan. 2006, Spline Methods in CAGD, Affine combination Linear combinations Affine(Barycentric) combinations Convex combinations Barycentric coordinates

KMMCS, Jan. 2006, Spline Methods in CAGD, Affine combination Euclidean coordinate system Coordinate-free system

KMMCS, Jan. 2006, Spline Methods in CAGD, Polynomial interpolation

KMMCS, Jan. 2006, Spline Methods in CAGD, Polynomial interpolation Lagrange polynomials

KMMCS, Jan. 2006, Spline Methods in CAGD, Examples of cubic interpolation

KMMCS, Jan. 2006, Spline Methods in CAGD, Bezier

KMMCS, Jan. 2006, Spline Methods in CAGD, Representation Bezier

KMMCS, Jan. 2006, Spline Methods in CAGD, Bezier Paul de Faget de Casteljau, Citroen, 1959 Pierre Bezier, Renault, UNISUF system, 1962 A.R. Forrest, Cambridge, 1968

KMMCS, Jan. 2006, Spline Methods in CAGD, Properties of Bezier Affine invariance Convex hull property Endpoint interpolation Symmetry Linear precision Pseudo-local control Variation Diminishing Property

KMMCS, Jan. 2006, Spline Methods in CAGD, Spline curves J. Ferguson, Boeing Co., 1963 C. de Boor, W. Gordon, General Motors, 1963 to interpolate given data piecewise polynomial curves with certain differentiability constraints not to design free form curves

KMMCS, Jan. 2006, Spline Methods in CAGD, Piecewise cubic hermite interpolation

KMMCS, Jan. 2006, Spline Methods in CAGD, Cubic spline interpolation

KMMCS, Jan. 2006, Spline Methods in CAGD, Linear B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, Quadratic B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, Quadratic B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline Recurrence Relation Bernstein polynomial

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline Smoothness=Degree-Multiplicity

KMMCS, Jan. 2006, Spline Methods in CAGD, Representation B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, Cubic B-spline

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline space

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline C. de Boor, 1972 W. Gordon, Richard F. Riesenfeld, 1974 Larry L. Schumaker Tom Lyche Nira Dyn

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline basis functions B 0 ( x ) = ( 1 ; 0 · x < 1 ; 0 ; o t h erw i se B 1 ( x ) = 8 > < > : x ; 0 · x < 1 ; 2 ¡ x ; 1 · x < 2 ; 0 ; o t h erw i se B 2 ( x ) = 8 > > > < > > > : 1 2 x 2 ; 0 · x < 1 ; ¡ x ¡ x 2 ; 1 · x < 2 ; 1 2 ( ¡ 3 + x ) 2 ; 2 · x < 3 ; 0 ; o t h erw i se B ( x: 0 ; 1 ) B ( x: 0 ; 1 ; 2 ) B ( x: 0 ; 1 ; 2 ; 3 )

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement relation for B-spline B 0 ( x ) = B 0 ( 2 x ) + B 0 ( 2 x ¡ 1 ) B 1 ( x ) = 1 2 B 1 ( 2 x ) + B 1 ( 2 x ¡ 1 ) B 1 ( 2 x ¡ 2 ) B 2 ( x ) = 1 4 B 2 ( 2 x ) B 2 ( 2 x ¡ 1 ) B 2 ( 2 x ¡ 2 ) B 2 ( 2 x ¡ 3 ) B n ( x ) = 1 2 n n + 1 X i = 0 µ n + 1 i ¶ B n ( 2 x ¡ i )

KMMCS, Jan. 2006, Spline Methods in CAGD, Repeated integration for B-spline B 0 ( x ) = ( 1 ; 0 · x < 1 ; 0 ; o t h erw i se B n ( x ) = Z 1 0 B n ¡ 1 ( x ¡ t ) d t = B 0 ( x ) ­ B n ¡ 1 ( x ) p ( x ) ­ q ( x ) = Z 1 ¡ 1 p ( t ) q ( x ¡ t ) d t

KMMCS, Jan. 2006, Spline Methods in CAGD, E-splines ½ ® ( t ) = 1 + ( t ) e ® t ½ ¡ ! ® ( t ) = P N d m = 1 P n ( m ) n = 1 c m ; n t n ¡ 1 + ( n ¡ 1 ) ! e ® ( m ) ( t ) ½ ¡ ! ® ( t ) = ( ½ ® 1 ­ ½ ® 2 ­ ¢¢¢ ­ ½ ® n )( t ) w h ere ¡ ! ® = ( ® 1 ;:::; ® N ¡ 1 ; ® N ) ¡ ! ® = ( ® n ( 1 ) ( 1 ) ; ® n ( 2 ) ( 2 ) ;:::; ® n ( N d ) ( N d ) ) w h ere P N d m = 1 n ( m ) = N

KMMCS, Jan. 2006, Spline Methods in CAGD, E-splines ¯ ® ( t ) = ½ ® ( t ) ¡ e ® ½ ® ( t ¡ 1 ) = ( e ® t ; 0 · t < 1 ; 0 ; o t h erw i se ¯ ¡ ! ® ( t ) = ( ¯ ® 1 ­ ¯ ® 2 ­ ¢¢¢ ­ ¯ ® n )( t )

KMMCS, Jan. 2006, Spline Methods in CAGD, Truncated powers for B-spline B 1 ( x ) = c 1 ( x ) ¡ 2 c 1 ( x ¡ 1 ) + c 1 ( x ¡ 2 ) c n ( x ) = ( 1 n ! x n ; x ¸ 0 ; 0 ; o t h erw i se B 2 ( x ) = c 2 ( x ) ¡ 3 c 2 ( x ¡ 1 ) + 3 c 2 ( x ¡ 2 ) ¡ c 2 ( x ¡ 3 ) B n ( x ) = n + 1 X i = 0 ( ¡ 1 ) i µ n + 1 i ¶ c n ( x ¡ i )

KMMCS, Jan. 2006, Spline Methods in CAGD, Cross-sectional Volumes c n ( x ) = 1 p n + 1 vo l n "( f t 0 ; t 1 ;:::; t n g 2 ( R + ) n + 1 j n X i = 0 t i = x )#

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline basis as Cross-sectional Volumes B n ( x ) = 1 p n + 1 vo l n "( f t 0 ; t 1 ;:::; t n g 2 H n + 1 j n X i = 0 t i = x )#

KMMCS, Jan. 2006, Spline Methods in CAGD, Cross-sectional Volumes for subcubes B n ( x ) = 1 p n + 1 vo l n "( f t 0 ; t 1 ;:::; t n g 2 H n + 1 j n X i = 0 t i = x )#

KMMCS, Jan. 2006, Spline Methods in CAGD, Bivariate Tensor Product B-spline B n ; m ( x ; y ) = B n ( x ) B m ( y )

KMMCS, Jan. 2006, Spline Methods in CAGD, Box-spline as Cross-sectional Volumes X = ff a i ; b i g 2 z 2 j i = 0 ; 1 ;:::; n g B n ( x ) = 1 p n + 1 vo l n "( f t 0 ; t 1 ;:::; t n g 2 H n + 1 j n X i = 0 t i = x )# B P n ( x ; y ) = vo l n "( f t 0 ; t 1 ;:::; t n g 2 H n + 1 j n X i = 0 f a i ; b i g t i = f x ; y g )#

KMMCS, Jan. 2006, Spline Methods in CAGD, Bivariate Box spline over triangular grid

KMMCS, Jan. 2006, Spline Methods in CAGD, Shadows of boxes

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for B-spline S n ( x ) = 1 2 ( 1 + x ) S n ¡ 1 ( x ) S 0 ( x ) = 1 + x S 1 ( x ) = 1 2 ( x + x 2 ) S 2 ( x ) = 1 4 ( x + 3 x 2 + x 3 )

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline B P ( x ; y ) = ( 1 ; 0 · x ; y < 1 ; 0 ; o t h erw i se X = f( 1 ; 0 ) ; ( 0 ; 1 )g S ~ P ( x ; y ) = 1 2 ( 1 + x a y b ) S P ( x ; y ) ~ X = X [ f( a ; b )g S P ( x ; y ) = 1 2 ( 1 + x )( 1 + y ) B P ( x ; y ) = B P ( 2 x ; 2 y ) + B P ( 2 x ¡ 1 ; 2 y ) + B P ( 2 x ; 2 y ¡ 1 ) + B P ( 2 x ¡ 1 ; 2 y ¡ 1 )

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline ~ X = f( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 1 ; 1 )g S ~ P ( x ; y ) = 1 2 ( 1 + x )( 1 + y )( 1 + xy ) = £ 1 xx 2 ¤ y y 2 3 5

KMMCS, Jan. 2006, Spline Methods in CAGD, Subdivision for Box-spline · ¸ £ ¤ £ 1 ¤ · ¸ ~ X = f( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 1 ; 1 )g

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline ~ X = f( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 1 ; 1 ) ; ( ¡ 1 ; 1 )g S ~ P ( x ; y ) = 1 4 ( 1 + x )( 1 + y )( 1 + xy )( 1 + x ¡ 1 y ) = £ x ¡ 1 1 xx 2 ¤ y y 2 y

KMMCS, Jan. 2006, Spline Methods in CAGD, Subdivision for Box-spline ~ X = f( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 1 ; 1 ) ; ( ¡ 1 ; 1 )g · ¸· ¸· ¸· ¸

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline ~ X = f( 1 ; 0 ) ; ( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 0 ; 1 )g = £ 1 xx 2 ¤ y y S ~ P ( x ; y ) = 1 4 ( 1 + x ) 2 ( 1 + y ) 2

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline ~ X = f( 1 ; 0 ) ; ( 1 ; 0 ) ; ( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 0 ; 1 ) ; ( 0 ; 1 )g = £ 1 xx 2 x 3 ¤ y y 2 y S ~ P ( x ; y ) = 1 16 ( 1 + x ) 3 ( 1 + y ) 3

KMMCS, Jan. 2006, Spline Methods in CAGD, Refinement Relation for Box-spline ~ X = f( 1 ; 0 ) ; ( 1 ; 0 ) ; ( 0 ; 1 ) ; ( 0 ; 1 ) ; ( 1 ; 1 ) ; ( 1 ; 1 )g S ~ P ( x ; y ) = 1 16 ( 1 + x ) 2 ( 1 + y ) 2 ( 1 + xy ) 2 = £ 1 xx 2 x 3 x 4 ¤ y y 2 y 3 y

KMMCS, Jan. 2006, Spline Methods in CAGD, Condition number

KMMCS, Jan. 2006, Spline Methods in CAGD, Condition number of B-spline basis Tom Lyche and Karl Scherer, On the p-norm condition number of the multivariate triangular Bernstein basis, Journal of Computational and Applied Mathematics 119(2000)

KMMCS, Jan. 2006, Spline Methods in CAGD, Stability

KMMCS, Jan. 2006, Spline Methods in CAGD, Blossom

KMMCS, Jan. 2006, Spline Methods in CAGD, Blossom

KMMCS, Jan. 2006, Spline Methods in CAGD, B-spline problems Degree Elevation Degree Reduction Knot Insertion Knot Deletion Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design, 4 th ed, Academic Press (1996) Ronald N. Goldman, Tom Lyche, editors, Knot Insertion and Deletion Algorithms for B- Spline Curves and Surfaces, SIAM (1993)

KMMCS, Jan. 2006, Spline Methods in CAGD, Bezier Degree Reduction

KMMCS, Jan. 2006, Spline Methods in CAGD, Bezier Degree Reduction Least square method Legendre-Bernstein basis transformations Rida T. Farouki, Legendre-Bernstein basis transformations, Journal of Computational and Applied Mathematics 119(2000) Byung-Gook Lee, Yunbeom Park and Jaechil Yoo, Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction, Computer Aided Geometric Design 19(2002)

KMMCS, Jan. 2006, Spline Methods in CAGD, Bezier Degree Reduction with constrained

KMMCS, Jan. 2006, Spline Methods in CAGD, Contents Affine combination Bezier curves Spline curves B-spline curves Condition number L1-norm spline Quasi-interpolant Box-spline Cross-sectional volumes Refinement relation Subdivision Reference “ Spline Methods Draft ” Tom Lyche and Knut Morken “ Subdivision Methods for Geometric Design: A Constructive Approach ” Joe Warren and Henrik Weimer Reference “ Spline Methods Draft ” Tom Lyche and Knut Morken “ Subdivision Methods for Geometric Design: A Constructive Approach ” Joe Warren and Henrik Weimer