Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
PROPERTIES OF TRAPPED Ca+ IONS
electrostatic ion beam trap
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
Helmholtzzentrum für Schwerionenforschung Fluorescence detection in a Penning trap Radu Cazan.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Compton Effect 1923 Compton performed an experiment which supported this idea directed a beam of x-rays of wavelength  onto a carbon target x-rays are.
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.

Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Guillermina Ramirez San Juan
SPEC(troscopy) -Trap Outline of talk Introduction – motivation for two cross continent traps Imperial College Group – areas of interest and expertise SPECTRAP/SPECTRAP’
PG lectures Spontaneous emission. Outline Lectures 1-2 Introduction What is it? Why does it happen? Deriving the A coefficient. Full quantum description.
Towards sympathetic cooling of trapped ions with laser- cooled Mg+ ions for mass spectrometry and laser spectroscopy Radu Cazan.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Laser Notcher Pulse Energy Requirements & Demonstration Experiment David Johnson, Todd Johnson, Vic Scarpine.
Light Pulse Atom Interferometry for Precision Measurement
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Collinear laser spectroscopy of 42g,mSc
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
L. Liszkay IRFU CEA Saclay, France GBAR collaboration
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Considerations on Rydberg transport for antihydrogen formation Daniel Comparat Laboratoire Aimé Cotton Orsay FRANCE.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
Chao Zhuang, Samansa Maneshi, XiaoXian Liu, Ardavan Darabi, Chris Paul, Luciano Cruz, and Aephraim Steinberg Department of Physics, Center for Quantum.
A10 Designing spin-spin interactions in cold ion crystals
An Electron source for PERLE
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Beam dynamics simulation with 3D Field map for FCC RF gun
Measurement Science Science et étalons
Resonant dipole-dipole energy transfer
Preparing antihydrogen at rest for the free fall in
PANDA Collaboration Meeting
Ion Trap Quantum Computing and Teleportation
University of California, Berkeley
Cold Atom project 12/02/2019.
Presentation transcript:

Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler Jochen Walz Sebastian Wolf WAG November 2013 Bern 2014 – 2017 Bescool project

Outline H + motion control requirements Capture and cooling challenges Experimental progress

GBAR overview

Last GBAR steps Reaction chamber H + Capture and cooling by laser cooled Be + ions Threshold Photodetachment =1.7 µm H at rest g H initial velocity  v 0 < 0.8 m/s H + 3 neV, 20 µK Accurate measurment of g < 1 % H e+e+ H+H+ 30 cm keV Temperature eV Recoil 0.23 m/s

H with v 0 < 1 m/s ? Ground state quantum harmonic oscillator m = kg,  v 0 < 0.8 m/s  < 3 MHz Cooling challenges Reaction chamber Kinetic energy keV Temperature eV K Trapped particule Temperature 3 neV 20 µK Capture + Cooling Cold trapped H + Classical world Frontiers of Quantum world ÷ NIST D. Wineland Innsbruck R. Blatt

> laser cooled Be + ions 100 neV, T ~ mK few mm 300 eV, T = K H+H+ First step Two Cooling Steps T ÷ Capture and sympathetic Doppler cooling by laser cooled Be + ions 313 nm laser in the linear capture trap (Paul trap, r 0 = 3.5 mm,  = 13 MHz) Second step Transfer and ground state cooling of a Be + / H + ion pair in the precision trap F. Schmidt Kaler, S. Wolf, Mainz

Capture efficiency First step Be + laser cooled ions 1 keV H + ions 1000… 0 V Input end-caps Output end-caps time U biais =980 V H + intake 0 V   Versus intake delay Versus initial temperature (eV) eV Biased linear RF Paul trap

Sympathetic cooling time First step E c = 2 meV 313 nm laser v t = 0 s t = 8 ms Numerical simulation 500 Be + and 20 H + Hotter H + ions and larger ion clouds numerical challenge Work plan : Experimental tests with matter ions H 2 + or H +

Precision trap – motional couplings z x,y Be + H+H+ Two coupled oscillators in an external potential T. Hasegawa, Phys. Rev. A 83, (2011) J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, (2012) 1D 3D normal modes in phase mode out of phase mode individual ion modes x, y, z z trapping DC potentials x,y trapping RF effective potentials Coulomb interaction coupling Newton equations equilibrium positions small oscillations Second step

m lc /m sc b12b12 z motion x,y motion Precision trap – motional couplings Second step m LC /m SC  1 b 1 = 50 % b 2 = 50 % m LC /m SC = 9/1 b 1 = %b 2 = % Efficient sympathetic cooling ?

Doppler cooling in precision trap >> 20 µK

Raman side band cooling nm 2 S 1/2 2 P 1/2 2 P 3/2 F=0, 1, 2, 3 F=1, 2 Stimulated Raman transition Spontaneous Raman transitions n=3 n=2       hfs -  i  3 laser freq. 2 beams  hfs = 1.25 GHz  ~ tens of GHz Be + H+H+  vibr

Raman side band cooling Stimulated Raman transition no spontaneous emission coherent process n=3 n=2 Population transfert probability Lamb Dicke parameter For n → n-1,  pulse duration Single ionb 1 = 13 modes  ~ 100 µs /n/mode Be + /H + b 1z = modesx 5 b 1x,y = modesx 15 ~ 10 ms < 1s  Rabi oscillation Second step

Experimental progress

RF DC O V DC Hot H nm cooling laser Quadrupole guide RF 250 V at 13.3 MHz, r 0 = 3.5 mm DC’s V Capture trap design Jean-Philippe Karr 12 mm

Design: Sebastian Wolf, Mainz Transfer to precision trap = 313 nm = 1.64 µm Cooling Photodetachment Mainz implantation trap Capture trap ~2 mm

Vacuum vessel H+H+ Capture trap Precision trap with cryopumping

Evaluate sympathetic cooling times numerically & experimentally Work plan 11/2013 Achieve the design 12/2013 Setup the cooling lasers Capture trap implementation 03/2014 Test with H 2 + and H + matter ions from the REMPI source 12/ /2015 Test with Be + and Ca + ions Precision trap implementation Transfer of precision trap to Paris, 12/ / /2016 Be + and H 2 + transfered in precision trap Be + /H 2 + ground state cooling

Tests with a H 2 + / H + REMPI source P=10 -6 mb Ion creation P=10 -8 mb Ion optics P= mb Injection into the quadrupole guide H2H2 303 nm pulsed laser 3-4 mJ H 2 + ions Ec = 50 eV  E ~ 10 meV H 2 + ions Ec = 0 eV  E ~ 200 meV Synergies H + Gbar H 2 + metrology project HCI highly charged ions 40 Ar 13+, P. Indelicato, C. Szabo 100 % efficiency

Conclusion Capture of > 10 eV H + and Doppler cooling in a linear Paul trap Transfer to precision trap Doppler and ground state cooling in precision trap OK ANR BESCOOL ITN ComiQ

Can we improve the motional couplings ? Idea Efficient coupling Coulomb coupling Trapped ions  1 ~  2 ~ 1.0 MHz  Coul ~ 100 kHz z 12eq < 40 µm z 12eq with m 1 = 9, m 2 =1 Double well structure with very small electrodes 11 22  coul Single well  z 2 ~ 3  z  1 poor couplings Possible solution  x 2 ~ 9  x  1 ?