1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.

Slides:



Advertisements
Similar presentations
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Advertisements

Diurnal Variability of Aerosols Observed by Ground-based Networks Qian Tan (USRA), Mian Chin (GSFC), Jack Summers (EPA), Tom Eck (GSFC), Hongbin Yu (UMD),
A Dictionary of Aerosol Remote Sensing Terms Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Short.
Quantitative Interpretation of Satellite and Surface Measurements of Aerosols over North America Aaron van Donkelaar M.Sc. Defense December, 2005.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
Estimating global climatological PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin April 2009.
Satellite Applications in the Monitoring and Modeling of Atmospheric Aerosols Yang Liu, Ph.D. 11/18/ nd Suomi NPP Applications Workshop Huntsville,
Satellite Remote Sensing of Surface Air Quality
Infusing satellite Data into Environmental Applications (IDEA): R. Bradley Pierce NOAA/NESDIS/STAR PM2.5 forecasting tool hosted at NOAA NESDIS using NASA.
Profiling Clouds with Satellite Imager Data and Potential Applications William L. Smith Jr. 1, Douglas A. Spangenberg 2, Cecilia Fleeger 2, Patrick Minnis.
Visible Satellite Imagery Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Week –
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Dust Detection in MODIS Image Spectral Thresholds based on Zhao et al., 2010 Pawan Gupta NASA Goddard Space Flight Center GEST/University of Maryland Baltimore.
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
Satellite Remote Sensing of Global Air Pollution
Application of Satellite Data to Particulate, Smoke and Dust Monitoring Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality.
Training Workshop in Partnership with BAAQMD
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
Developing a High Spatial Resolution Aerosol Optical Depth Product Using MODIS Data to Evaluate Aerosol During Large Wildfire Events STI-5701 Jennifer.
Insight from the A-Train into Global Air Quality Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Akhila Padmanabhan,
1 AOD to PM2.5 to AQC – An excel sheet exercise ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta Salt.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Infusing satellite Data into Environmental Applications (IDEA): R. Bradley Pierce NOAA/NESDIS/STAR PM2.5 forecasting tool hosted at NOAA NESDIS using NASA.
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET-AQ Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Originally.
Applications of Satellite Remote Sensing to Estimate Global Ambient Fine Particulate Matter Concentrations Randall Martin, Dalhousie and Harvard-Smithsonian.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
Assessment of aerosol plume dispersion products and their usefulness to improve models between satellite aerosol retrieval and surface PM2.5  Chowdhury.
Wu Sponsors: National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Goddard Institute for Space Studies (GISS) New York.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
DEVELOPING HIGH RESOLUTION AOD IMAGING COMPATIBLE WITH WEATHER FORECAST MODEL OUTPUTS FOR PM2.5 ESTIMATION Daniel Vidal, Lina Cordero, Dr. Barry Gross.
Using Satellite Remote Sensing to Estimate Global Outdoor Air Pollution Exposure Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
NASA Aerosol (Particulate Matter) Products Pawan Gupta NASA ARSET- AQ On-line Short Course Fall 2013 ARSET - AQ Applied Remote SEnsing Training – Air Quality.
Where are we now and where are we going? Capabilities in Remote Sensing and Air Quality Applications ARSET - AQ Applied Remote SEnsing Training – Air Quality.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Satellite.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
Data was collected from various instruments. AOD values come from our ground Radiometer (AERONET) The Planetary Boundary Layer (PBL) height is collected.
1 AOD to PM2.5 to AQC – An excel sheet exercise ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta NASA.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Satellite Basics MAC Smog Blog Training CATHALAC, Panama, Sept 11-12, 2008 Jill Engel-Cox & Erica Zell Battelle Memorial Institute
Satellite Remote Sensing of NO 2 as an Indicator of Aerosol Pollution: Opportunities from GEMS (and GOCI) Observations Randall Martin with contributions.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
Aerosol Characterization Using the SeaWiFS Sensor and Surface Data E. M. Robinson and R. B. Husar Washington University, St. Louis, MO
Relating Aerosol Mass and Optical Depth in the Southeastern U.S. C. A. Brock, N. L. Wagner, A. M. Middlebrook, T. D. Gordon, and D. M. Murphy Earth System.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Chemical Data Assimilation: Aerosols - Data Sources, availability and needs Raymond Hoff Physics Department/JCET UMBC.
Review of PM2.5/AOD Relationships
Assimilation of Satellite Derived Aerosol Optical Depth Udaysankar Nair 1, Sundar A. Christopher 1,2 1 Earth System Science Center, University of Alabama.
Modeling the emission, transport, and optical properties of Asian dust storms using coupled CAM/CARMA model Lin Su and Owen B. Toon Laboratory for Atmospheric.
Satellite Remote Sensing of the Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Dalhousie University.
NASA, CGMS-44, 7 June 2016 Coordination Group for Meteorological Satellites - CGMS LIMB CORRECTION OF POLAR- ORBITING IMAGERY FOR THE IMPROVED INTERPRETATION.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
number Typical aerosol size distribution area volume
An Introduction to the Use of Satellites, Models and In-Situ Measurements for Air Quality and Climate Applications Richard Kleidman
What Are the Implications of Optical Closure Using Measurements from the Two Column Aerosol Project? J.D. Fast 1, L.K. Berg 1, E. Kassianov 1, D. Chand.
Fourth TEMPO Science Team Meeting
Daytime variations of AOD and PM2
ATMOSPHERIC AEROSOL: suspension of condensed-phase particles in air
Satellite Remote Sensing of a Multipollutant Air Quality Health Index
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
ECV definitions Mapping of ECV product with OSCAR variables
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar1, Randall Martin1,2,
M. De Graaf1,2, K. Sarna2, J. Brown3, E. Tenner2, M. Schenkels4, and D
Presentation transcript:

1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan Gupta and Yang Liu Salt Lake City, April 22-25, 2012

Estimation of PM2.5 mass concentration at surface (µgm -3 ) while utilizing satellite derived Aerosol Optical Depth (AOD – unit less quantity) at visible wavelength OBJECTIVE

Sensitive groups should avoid all physical activity outdoors; everyone else should avoid prolonged or heavy exertion Sensitive groups should avoid prolonged or heavy exertion; everyone else should reduce prolonged or heavy exertion Sensitive groups should reduce prolonged or heavy exertion Unusually sensitive people should consider reducing prolonged or heavy exertion None Cautionary Statements Index Values PM 10 (ug/m 3 ) PM 2.5 (ug/m 3 ) Category Good Very Unhealthy Unhealthy Unhealthy for Sensitive Groups Moderate What are we looking for ?

Surface Aerosol Rayleigh Scattering Water vapor + other gases (absorption) Ozone 10km Satellite Sun Column Satellite Measurement Particle size Composition Water uptake Vertical Distribution Satellite retrieval issues - inversion (e.g. aerosol model, background). Seven MODIS bands are utilized to derive aerosol properties 0.47, 0.55, 0.65, 0.86, 1.24, 1.64, and 2.13 µm 10X10 km 2 Res. What Satellite Provides?

Measurement Technique AOD – Column integrated value (top of the atmosphere to surface) - Optical measurement of aerosol loading – unit less. AOD is function of shape, size, type and number concentration of aerosols PM2.5 – Mass per unit volume of aerosol particles less than 2.5 µm in aerodynamic diameter at surface (measurement height) level

What satellite provides and how to get it?

DRAFT May 11, 2007 May 12, 2007 May 13, 2007 May 14, 2007 May 15, 2007 May 16, 2007 MODIS-Terra True Color Images

DRAFT May 11, 2007 May 12, 2007 May 13, 2007 May 14, 2007 May 15, 2007 May 16, 2007 MODIS-Terra Aerosol Optical Thickness

Data Quality – MODIS DT Product (Levy et al. 2010) Expected error: ±( ) 9

AOT to PM

AOD – PM Relation   – particle density  Q – extinction coefficient  r e – effective radius  f PBL – % AOD in PBL  H PBL – mixing height Composition Size distribution Vertical profile

Support for AOD-PM 2.5 Linkage  Current satellite AOD is sensitive to PM 2.5 (Kahn et al. 1998)  Polar-orbiting satellites can represent at least daytime average aerosol loadings (Kaufman et al., 2000)  Missing data due to cloud cover appear random in general (Christopher et al., 2010 )

AOT-PM Chu et al., 2003 Wang et al., 2003

Gupta, 2008 AOT-PM2.5 Relationship

Questions to Ask: Issues How accurate these estimations are ? Is PM2.5-AOT relationship is always linear? How does uncertainty in AOT retrieval impact estimation of air quality Does this relationship changes in space and time? Does this relationship changes with change in aerosol type? How meteorology drive this relationship? How about vertical distribution of aerosols in the atmosphere?

Assumption for Quantitative Analysis When most particles are concentrated and well mixed in the boundary layer, satellite AOD contains a strong signal of ground-level particle concentrations.

Modeling the Association of AOD With PM 2.5  The relationship between AOD and PM 2.5 depends on parameters hard to measure: Vertical profile Size distribution and composition Diurnal variability  We develop statistical models with variables to represent these parameters Model simulated vertical profile Meteorological & other surrogates Average of multiple AOD measurements No textbook solution!

Methods Developed So Far  Statistical models Correlation & simple linear regression Multiple linear regression with effect modifiers Linear mixed effects models Geographically weighted regression Generalized additive models Hierarchical models combining the above Bayesian models Artificial neural network  Data fusion models Combining satellite data with model simulations  Deterministic models Improving model simulation with satellite data

Limitation: Vertical Distribution of Aerosols

Vertical Distribution Engel-Cox et al., 2006 Al-Saadi et al., 2008

Aug 17 Aug 18 Aug 19 Aug 20 Aug 21 Aug 22 Aug 23 Aug 25 Aug 28 5 km (courtesy of Dave Winker, P.I. CALIPSO) What Satellites can provide for vertical information? - CALIPSO

Observed vs Estimated (AOD only) Advantages of using reanalysis meteorology along with satellite Observed vs Estimated (AOD + Meteorology) Linear Correlation Coefficients

Combination of model and satellite observations van Donkelaar et al., 2010

Suggested Reading