An Introduction to Decision Theory

Slides:



Advertisements
Similar presentations
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved
Advertisements

Decision Theory.
To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 5S Decision Theory.
Introduction to Decision Analysis
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Operations Management
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin An Introduction to Decision Making Chapter 20.
DSC 3120 Generalized Modeling Techniques with Applications
Part 3 Probabilistic Decision Models
Chapter 8 Decision Analysis MT 235.
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
CHAPTER 19: Decision Theory to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel.
DECISION THEORY Decision theory is an analytical and systematic way to tackle problems A good decision is based on logic.
Project Management Risk Management. Outline 1.Introduction 2.Definition of Risk 3.Tolerance of Risk 4.Definition of Risk Management 5.Certainty, Risk,
Decision Analysis Chapter 3
Decision Making Under Uncertainty and Under Risk
Decision Analysis Chapter 3
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
© 2008 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools PowerPoint presentation to accompany Heizer/Render Principles of.
Operations Management Decision-Making Tools Module A
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Decision Analysis Chapter 3
© 2006 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany.
MA - 1© 2014 Pearson Education, Inc. Decision-Making Tools PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
Module 5 Part 2: Decision Theory
An Introduction to Decision Theory (web only)
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations.
Chapter 3 Decision Analysis.
3-1 Quantitative Analysis for Management Chapter 3 Fundamentals of Decision Theory Models.
Decision Theory Decision theory problems are characterized by the following: 1.A list of alternatives. 2.A list of possible future states of nature. 3.Payoffs.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Chapter 9 - Decision Analysis - Part I
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
A - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall A A Decision-Making Tools PowerPoint presentation to accompany Heizer and Render Operations.
© 2008 Prentice Hall, Inc.A – 1 Decision-Making Environments  Decision making under uncertainty  Complete uncertainty as to which state of nature may.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Lecture 6 Decision Making.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
QUANTITATIVE TECHNIQUES
DECISION THEORY & DECISION TREE
Chapter Twenty McGraw-Hill/Irwin
Welcome to MM305 Unit 4 Seminar Larry Musolino
Decision Theory Dr. T. T. Kachwala.
Chapter 19 Decision Making
Operations Management
MNG221- Management Science –
نظام التعليم المطور للانتساب
نظام التعليم المطور للانتساب
Presentation transcript:

An Introduction to Decision Theory Chapter 20 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.

Learning Objectives LO1 Identify and apply the three components of a decision. LO2 Compute and interpret the expected values for a payoff table. LO3 Explain and interpret opportunity loss. LO4 Describe three strategies for decision making. LO5 Compute and describe the expected value of information. LO6 Organize possible outcomes into a decision tree and interpret the result. 20-2

Statistical Decision Theory LO1 Identify and apply the three components of a decision. Statistical Decision Theory Classical statistics focuses on estimating a parameter, such as the population mean, constructing confidence intervals, or hypothesis testing. Statistical Decision Theory (Bayesian statistics) is concerned with determining which decision, from a set of possible decisions, is optimal. Three components to any decision-making situation: The available choices (alternatives or acts). The states of nature, which are not under the control of the decision maker - uncontrollable future events. The payoffs - needed for each combination of decision alternative and state of nature. A Payoff Table is a listing of all possible combinations of decision alternatives and states of nature. The Expected Payoff or the Expected Monetary Value (EMV) is the expected value for each decision. 20-3

LO1 Decision Making 20-4

Calculating the EMV Let Ai be the ith decision alternative. LO2 Compute and interpret the expected values for a payoff table. Calculating the EMV Let Ai be the ith decision alternative. Let P(Sj) be the probability of the jth state of nature. Let V(Ai, Sj) be the value of the payoff for the combination of decision alternative Ai and state of nature Sj. Let EMV (Ai) be the expected monetary value for the decision alternative Ai. 20-5

Decision Making Under Conditions of Uncertainty - Example LO2 Decision Making Under Conditions of Uncertainty - Example EXAMPLE Bob Hill, a small investor, has $1,100 to invest. He has studied several common stocks and narrowed his choices to three, namely, Kayser Chemicals, Rim Homes, and Texas Electronics. He estimated that, if his $1,100 were invested in Kayser Chemicals and a strong bull market developed by the end of the year (that is, stock prices increased drastically), the value of his Kayser stock would more than double, to $2,400. However, if there were a bear market (i.e., stock prices declined), the value of his Kayser stock could conceivably drop to $1,000 by the end of the year. His predictions regarding the value of his $1,100 investment for the three stocks for a bull market and for a bear market are shown below. A study of historical records revealed that during the past 10 years stock market prices increased six times and declined only four times. According to this information, the probability of a market rise is .60 and the probability of a market decline is .40. (.60) (.40) Calculation (A1)=(.6)($2,400)+(.4)($1,000) =$1,840 (A2)=(.6)($2,400)+(.4)($1,000) =$1,760 (A3)=(.6)($2,400)+(.4)($1,000) =$1,600 20-6

Opportunity Loss LO3 Explain and interpret opportunity loss table. Opportunity Loss or Regret is the loss because the exact state of nature is not known at the time a decision is made. The opportunity loss is computed by taking the difference between the optimal decision for each state of nature and the other decision alternatives. 20-7

Opportunity Loss LO3 20-8 Opportunity Loss when Market Rises Kayser: $2,400 - $2,400= $0 Rim Homes: $2,400 - $2,200 = $200 Texas Electronics: $2,400 - $1,900 = $500 Opportunity Loss when Market Declines Kayser: $1,150 - $1,000= $150 Rim Homes: $1,150 - $1,100 = $50 Texas Electronics: $1,150 - $1,150 = $0 20-8

Expected Opportunity Loss 0.60 0.40 (A1)=(.6)($0)+(.4)($150) =$60 (A2)=(.6)($200)+(.4)($50) =$140 (A3)=(.6)($500)+(.4)($0) =$300 20-9

Maximin, Maximax, and Minimax Regret Strategies LO4 Describe three strategies for decision making. Maximin, Maximax, and Minimax Regret Strategies Maximin strategy maximizes the minimum gain. It is a pessimistic strategy. Maximax strategy maximizes the maximum gain. Opposite of a maximin approach, it is an optimistic strategy Minimax regret strategy minimizes the maximum regret (opportunity loss). This is another pessimistic strategy Payoff Table Maximin 1,000 1,100 1,150 Maximax 2,400 2,200 1,900 Opportunity Loss Table Minimax Regret 150 200 500 20-10

Value of Perfect Information LO5 Compute and describe the expected value of information. Value of Perfect Information What is the worth of information known in advance before a strategy is employed? Expected Value of Perfect Information (EVPI) is the difference between the expected payoff if the state of nature were known and the optimal decision under the conditions of uncertainty. 20-11

Value of Perfect Information LO5 Step 1: Compute the Expected Value Under Certainty Expected Value Under Certainty (.60) (.40) Step 2: Compute the Expected Value Under Uncertainty Expected Value Under Uncertainty Step 3: Subtract the Expected Value Under Uncertainty from the Expected Value Under Certainty 20-12

Sensitivity Analysis and Decision Trees LO6 Organize possible outcomes into a decision tree and interpret the result. Sensitivity Analysis and Decision Trees Sensitivity Analysis examines the effects of various probabilities for the states of nature on the expected values for the decision alternatives. Decision Trees are useful for structuring the various alternatives. A decision tree is a picture of all the possible courses of action and the consequent possible outcomes. A box is used to indicate the point at which a decision must be made, The branches going out from the box indicate the alternatives under consideration 20-13

LO6 Decision Trees $2,400 20-14