1 © 2005 Independent Quality Labs, Inc. CTMA 2005 Tools for Improving Machine Tool Volumetric Accuracy Robert (Buz) Callaghan Chief Engineer.

Slides:



Advertisements
Similar presentations
Geometric Tolerances & Dimensioning
Advertisements

Geometric Tolerances & Dimensioning
Chapter 16 Tolerancing.
Automation (21-541) Sharif University of Technology Session # 13
Complimentary slides to Chris Monnier at Boston Scientific
Geometric Dimensioning and Tolerancing (GD&T)
Geometric Tolerances J. M. McCarthy Fall 2003
SDC PUBLICATIONS © 2012 Introduction Learning Objectives: Basic Computer Aided Design and Computer Aided Engineering Terminology Development of Computer.
Intended Audience: This StAIR is intended for advanced second year students (10-12 grade) with a mechanical focus.Objective: Given the Applying GD&T StAIR.
HST Rough Toolpaths. Cut Parameters Note: The cut parameters will change based on the toolpath type. When possible the same settings will be brought into.
Manufacturing Automation
Chapter Four Fits and Tolerances: Linear and Geometry.
Dr. HABEEB HATTAB HABEEB Office: BN-Block, Level-3, Room-088
CNC Machining in industry. What I will be speaking about Types of CNC machining Some common misconceptions Skills required in industry Job opportunities.
Dimensioning Review Objectives:.
Introduction to Solid Modeling
Metrology Metrology is the science of measurement Dimensional metrology is that branch of Metrology which deals with measurement of “dimensions“ of a part.
Tolerancing Chapter Technical Drawing 13 th Edition Giesecke, Mitchell, Spencer, Hill Dygdon, Novak, Lockhart © 2009 Pearson Education, Upper Saddle.
An Introduction to - Computer Numerical Control. Introduction CNC: Computer Numerical Control Production of machined parts whose production is controlled.
Geometric Dimensions and Tolerances
Fabrication II By Ryan Sharp and Andrew Keisic. Topics How to machine a simple part. Things to Keep in Mind When Designing Parts Tooling Setup CNC.
Geometric Dimensioning and Tolerancing
Introduction to Computer Aided Process Planning
MEMD 261 Computer Aided Design (CAD) Introduction to CAD
Goal: Understand the stages in design process and the role of computer aided design. Objectives: After this chapter, you should understand the following.
Dimensioning (WEEK 2).
INDUSTRY DAY TOULOUSE 2006/06/ th ISO TC184/SC4 meeting Industry Day STEP-NC AP-238 Martin Hardwick STEP Tools, Inc.
Geometric Dimensioning & Tolerancing
General Tolerance and Hole Fit
LASER AND ADVANCES IN METROLOGY
Ken YoussefiMechanical & Aerospace Engineering Dept., SJSU 1 Dimensioning & Tolerancing.
Manual Process Planning Manufacturing Processes (2), IE-352 Ahmed M El-Sherbeeny, PhD Spring 2014.
ME 418 M8, M9, & M Robert Peace
Geometric Dimensioning and Tolerancing Course Number Instructor’s name Planchard Copyright 2012.
Geometric Dimensioning and Tolerancing GD&T. What is GD & T?  Geometric dimensioning and tolerancing is an international language used on drawings to.
ISE 370 TOLERANCES. Performance Factors Performance Factors > Dimensions Linear Angular > Surfaces.
DPT 312 METROLOGY CHAPTER 3 MEASUREMENT AND TOLERANCES
Geometric Dimensioning and Tolerancing
Instructor: James Thornburgh
Print Reading for Industry BRX 210 – Module 1
Shanghai Jiao Tong University 1 GEOMETRIC DIMENSIONING & TOLERANCING (GD & T) ME 250: Design & Manufacturing I School of Mechanical Engineering.
PRESENTED BY SUBMITTED TO ANUJ KUMAR SRIVASTAVA Mr. DEEPAK SHARMA ME-1 3 rd YEAR COORDINATOR AND FACCULTY ROLL NO IMSEC MILLING.
CHAPTER TWO : Geometric Tolerances
1 JEOPARDY! Version 2005: Review for IED 2 Design Process Sketching Visualization Geometric Relations Modeling $100 $200 $300 $400 $500 Presentations.
CAD CAM. 2 and 3 Dimensional CAD: Using 2-dimensional CAD software, designers can create accurate, scaled drawings of parts and assemblies for designs.
MECH 538 Application of Drawing Requirements Tools Fixtures and Gaging.
Integrated Hands-On Mechanical System Laboratories Arif Sirinterlikci, Ph.D., Professor of Engineering Tony Kerzmann, Ph.D., Assistant Professor of Mechanical.
Lesson Plan: Drafting and Design J6-2. What is 3D solid modeling? How do 3D solid modeling programs work?
Mechanical Engineering Department CAD/CAM
10 Dimensioning. 10 Dimensioning Explain why dimensions and notes are needed on drawings. Identify, explain, and accurately use the two systems of.
VEX Units of work UNIT 1: TUMBLERUNIT 2: CLAWBOTUNIT 3: MANUFACTURING UNIT 1.1: Autodesk Inventor TUMBLER Build UNIT 2.1: Autodesk Inventor CLAWBOT Build.
Fits and Tolerances: Linear and Geometry.
Project Overview CNC Introduction Applying CNC Designing for CNC
Manual Process Planning
Manual Process Planning
Computer Aided Design Computer Aided Manufacture
Geometric Dimensioning and Tolerancing (GD&T)
Section 4 Advanced Applications
Introduction to Geometric Dimensioning &Tolerancing for ME/EE/Ceng 264
Computer Aided Design (CAD) Introduction to CAD
Introduction to CNC Milling
Software Metrics “How do we measure the software?”
MEMD 261 Computer Aided Design (CAD) Introduction to CAD
Manual Process Planning
Eng. Ibrahim Kuhail Eng. Ahmed Al Afeefy
Fusion 360 integrated CAD/CAM for Digital Manufacturing
GD&T Overview Class April 24, 2019.
ME 251 Anupam Saxena Professor Mechanical Engineering
Computer-Aided Design (CAD)
Presentation transcript:

1 © 2005 Independent Quality Labs, Inc. CTMA 2005 Tools for Improving Machine Tool Volumetric Accuracy Robert (Buz) Callaghan Chief Engineer

© Independent Quality Labs, Inc. Why Improve Machine Tool Volumetric Accuracy? b Measuring machine performance  Allows process improvements before parts are made.  Allows predictive repairs of machines.

© Independent Quality Labs, Inc. Why Improve Machine Tool Volumetric Accuracy? b Measuring finished part dimensions  Can only be done after the part is completed.  Causes reject parts to be repaired or thrown way.

© Independent Quality Labs, Inc. What are the Tools? b Machine Error Budgets b Machine Parametric Measurement

© Independent Quality Labs, Inc. How did these tools evolve? b For over 90 years, the builders determined machine performance standards. b Dr. Georg Schlesinger recognized the need to do measurements on machine tools.

© Independent Quality Labs, Inc.  squareness  level How did these tools evolve? b Schlesinger’s book, Testing Machine Tools, contains parametric tests, such as limited to the characterization of machine spindles and moving components  roundness  straightness

© Independent Quality Labs, Inc. How did these tools evolve? b Engineers at Lawrence Livermore National Labs found these methods inadequate for specifying their machines.

© Independent Quality Labs, Inc. How did these tools evolve? b The ISO 230 Specifications were for the assembly of machine tool components not the capability of machines to make parts.

© Independent Quality Labs, Inc.  “parametric error budgeting”  “parametric error measurement” What were their solutions? b They developed techniques to aid in specification, design & production of the world’s most accurate machine tools.

© Independent Quality Labs, Inc. b Identify machine axis relation parameters b Identify machine thermal error parameters b Identify machine environmental error parameters b Sum error parameters Parametric Error Budgeting b Identify machine motion error parameters

© Independent Quality Labs, Inc. Motion Error Parameters

© Independent Quality Labs, Inc. Motion Error Parameters

© Independent Quality Labs, Inc. Relation Parameters

© Independent Quality Labs, Inc. Machine Error Budget

© Independent Quality Labs, Inc. Extending Budgeting Methods b Part Feature Assessment b Process Error Budget

© Independent Quality Labs, Inc. Part Feature Assessment b Part features and tolerances are well defined by ASME Y14.5M-1994 Dimensioning and Tolerancing. b The definitions of size, form, profile, location, orientation, and run-out are used to relate features with processes.

© Independent Quality Labs, Inc. Part Feature Assessment Length Width Height Size Diameter Straightness Flatness Circularity For Individual Features Form Cylindricity Of a Line For Individual or Related FeaturesProfile Of a Surface Position Concentricity Location Symmetry Angularity Perpendicularity Orientation Parallelism Circular For Related Features Runout Total

© Independent Quality Labs, Inc. Part Feature Assessment b Feature Tolerance Ratio (FTR)  determined by dividing the feature tolerance bandwidth by the distance over which it is applied

© Independent Quality Labs, Inc. Part Feature Assessment

© Independent Quality Labs, Inc. Process Error Budget b The development of a Process Model from the Full Volume Model involves four steps.

© Independent Quality Labs, Inc. Process Error Budget 2. determine which of the machine axes are moved and how far 1. use the FTR to identify the features and tolerances, which will govern capability

© Independent Quality Labs, Inc. Process Error Budget 3. determine the effect of squareness and angular errors 4. compare the sum of all errors to feature tolerance bandwidth = Part Tolerance Ratio (PTR)

© Independent Quality Labs, Inc. Process Error Budget b Part Tolerance Ratio (PTR) should be greater than 4

© Independent Quality Labs, Inc. Process Error Budget

© Independent Quality Labs, Inc. Parametric Error Measurement b Methods specified by ANSI Standards b Methods require full documentation to assure repeatability b Errors exceeding budgeted values must be corrected

© Independent Quality Labs, Inc. Parametric Error Measurement b Roll with Electronic Level

© Independent Quality Labs, Inc. Parametric Error Measurement b Accuracy with Laser

© Independent Quality Labs, Inc. Parametric Error Correction b Proper measurement and presentation of errors b Leads to rapid error correction

© Independent Quality Labs, Inc. Yaw Errors Loose Saddle

© Independent Quality Labs, Inc. Yaw Errors Before Gib Adjustment

© Independent Quality Labs, Inc. Yaw Errors After Gib Adjustment

© Independent Quality Labs, Inc. Tools Under Development b Computer Aided Process Specification (CAPS) b LOCUSw Machine Measurement and Correction Software

© Independent Quality Labs, Inc. CAPS b Objective: To integrate the existing budgeting methods with CAD/CAM to produce Machine Performance Specifications

© Independent Quality Labs, Inc. Current CAPS

© Independent Quality Labs, Inc. New CAPS

© Independent Quality Labs, Inc. CAPS How will it work? 2. Select or build Machine Error Budget. 3. Scan CAM files to establish axis paths and tool selection. 4. Create Process Error Budget. 5. Print Parameter Specification 1. Scan CAD files and establish FTRs.

© Independent Quality Labs, Inc. LOCUSw b Objectives; 1. Create data for CAPS. 2. Incorporate error correction. 3. Facilitate training

© Independent Quality Labs, Inc. LOCUSw Define Machine

© Independent Quality Labs, Inc. LOCUSw Select Sequence

© Independent Quality Labs, Inc. LOCUSw Setup Test

© Independent Quality Labs, Inc. LOCUSw Run Test

© Independent Quality Labs, Inc. LOCUSw Review Results

© Independent Quality Labs, Inc. How do these tools affect Weapon System Sustainment? b Many parts are produced on Computer Numerically Controlled (CNC) Machines.  Using digitally transferred programs to produce a single part.  One reject means 100% scrap. b Worn parts from existing Weapon Systems must be replaced by the Depots.

© Independent Quality Labs, Inc. How do these tools affect Weapon System Sustainment? b Parts for new Weapon Systems are often made at the lowest cost.  This has caused the large Defense Contractors to out-source.  Resulting in smaller companies attempting to produce increasingly complex parts.

© Independent Quality Labs, Inc. How do these tools affect Weapon System Sustainment? b Parts for new Weapon Systems are also produced on CNC Machines.  Smaller companies do not always have the resources to solve complex problems.  Resulting in scrap, delays and cost over-runs.

© Independent Quality Labs, Inc. How can these tools improve CNC Machines? b CAPS matches capability with part requirements.  For selecting new machine vendors.  For selecting out-source vendors.  For selecting existing machines for new parts.  For determining the repair schedule.  For selecting machines to be retired or rebuilt. b Each CNC machine has it’s own unique capability.

© Independent Quality Labs, Inc. How does LOCUSw Software help Weapon System Sustainment?  To reduce the time of machine performance measurement and correction.  To capture, analyze and diagnose CNC machine errors.

© Independent Quality Labs, Inc. How does LOCUSw Software help Weapon System Sustainment?  Adding knowledge based software for diagnostics.  Improving hands-on training at Weapons Depots.