Lecture 16. The Halogens PhD Halina Falfushynska.

Slides:



Advertisements
Similar presentations
Year 12 What you should know already
Advertisements

Angstrom Care 1www.AngstromCare.com Angstrom Care Halogens II.
12 Chemistry 2.2 quantitative chemistry CR 07 Halogens: F 2, Cl 2, Br 2, I 2 Halogens as oxidants: Halogens attract electrons from other substances – they.
Chemical Reactions.
Steps to Writing Reactions Some steps for doing reactions 1. Identify the type of reaction 1. Predict the product(s) of the reaction 2. Write the correct.
Chemical Reactions.
IC S4 P1+2 – First hand investigation and analyse information from secondary sources to predict and explain different products of aqueous and molten NaCl.
Reactions in Aqueous Solutions
Chemical Reactions.
Reaction Types. Combination (Synthesis) Reactions Two or more substances combine to form a new compound. A + X  AX  Reaction of elements with oxygen.
PREPARATION & COLLECTION OF NON-METAL COMPOUNDS UNLESS YOU TRY TO DO SOMETHING BEYOND WHAT YOU HAVE ALREADY MASTERED, YOU WILL NEVER GROW. RALPH WALSO.
Chapter 6 The Periodic Table: Group7 6.1 The Halogens 6.2 Reactions of The Halogens and Their Ions.
11.0 The Halogens Text book p166 to AQA AS Specification LessonsTopics 1 How and why does the atomic radius and electronegativity change in Gp.
Unit 33 Bleach. Types of Bleaches Household chlorine bleach – a solution of chlorine in sodium hydroxide solution Cl 2(aq) + 2NaOH (aq)  NaCl (aq) +
Learning Objectives General trends of group 17 elements
Hydrogen chloride.
CHLORINE AND ITS COMPOUNDS HALOGENS. HHe Rn Xe Kr Ar Ne RaAcRfDbSgBhHsMtDsRg??????? BaLaHfTaWReOsIrPtAuHgTlPbBiPoAt SrYZrNbMoTcRuRhPdAgCdInSnSbTeI CaScTiVCrMnFeCoNiCuZnGaGeAsSeBr.
Advanced Higher Chemistry Unit 1 The oxides, chlorides and hydrides.
Group 7, the Halogens.
The Representative Elements Chapter 20 Lesson A Survey of the Representative Elements 20.2 The Group 1A Elements 20.3 The Chemistry of Hydrogen.
 Mass is never created or destroyed-ALL must be conserved and accounted for during a chemical reaction  The same number of atoms of reactant elements.
Making Salts Soluble salt Insoluble salt Acid + excess insoluble solid
1.5 Oxidation and Reduction. Learning Outcomes Introduction to oxidation and reduction: simple examples only, e.g. Na with Cl 2, Mg with O 2, Zn with.
Types of Chemical Reactions 8-2 Beaker Breaker Balance the following equation: ______H 3 PO 4  _______H 4 P 2 O 7 + ______H 2 O.
All toxic All form Diatomic molecules All form ionic salts
12.6 – How can we use ions in solutions?
Properties Dinitrogen is a colourless, odourless, tasteless and non-toxic gas. It has two stable isotopes: 14 N and 15 N. It has a very low solubility.
Group 7, the Halogens.
HALOGENS. Electron structure and reactivity HHe Rn Xe Kr Ar Ne RaAcRfDbSgBhHsMtDsRg??????? BaLaHfTaWReOsIrPtAuHgTlPbBiPoAt SrYZrNbMoTcRuRhPdAgCdInSnSbTeI.
Single & Double Replacement, Synthesis and Decomposition
Naming Compounds, cations and anions. Elements and symbols that you should know: Part 1 – The obvious ones: 1)Hydrogen 2)Helium 3)Lithium 4)Beryllium.
Halogens AS. F Cl Br I (At) Generally: Oxidising agents Germicides Note: Atoms are halogens Ions are halides Ions have 8 electrons by borrowing one, so.
Group 7 Elements The Halogens. Group 7 – the halogens The elements in group 7 of the periodic table, on the right, are called the halogens. fluorine chlorine.
You are experts at knowing the symbols of elements and using these symbols to write formulae. Now we are going to use these concepts to describe chemical.
Na & K, Mg & Br Zephan and Tae. Alkali Metals Most reactive elements – Ionic in nature (solid or aqueous) – Kept under special conditions to prevent contact.
Chapter 11 – Chemical Reactions There are many types of chemical reactions. We will study 5 of these. By being able to identify the type of chemical reaction.
Halogens To know how the Group 7 elements behave. (Grade C)
Salts.
Electro Chemistry. Conductors pass electricity (metals and ionic compounds (melted or in solution)) Insulators do not pass electricity (Plastics, wood,
2.7 Inorganic chemistry of group 7 (limited to chlorine, bromine and iodine) Cro2012.
Extracting metals. Methods of extracting metals The Earth's crust contains metals and metal compounds such as gold, iron oxide and aluminium oxide, but.
IGCSE CHEMISTRY SECTION 2 LESSON 2. Content The iGCSE Chemistry course Section 1 Principles of Chemistry Section 2 Chemistry of the Elements Section 3.
appreciate general trends in the chemistry of elements of Group15,16,17 and 18. learn the preparation, properties and uses of dinitrogen and phosphorus.
AS Revision Lessons Identification tests.
The Alkali Metals – Li, Na, K, Rb, Cs (Fr is unstable and scarce) -Low density largest atoms in each period with lowest mass in each period -Soft weak.
Topic 3.1 The periodic table 1. Assessment Statements Discuss the similarities and differences in the chemical properties of elements in the same.
Unit 1 Lesson 2 Chemical Compounds.  Valency: It is the number of electrons that an atom gained, lost or even shared during a chemical reaction.
Chemical Reactions CHAPTER 11. WHAT ARE OUR REPRESENTATIVE, OR BASIC PARTICLES? They are the smallest pieces of a substance. For a molecular compound:
Describing a Chemical Reaction Indications of a Chemical Reaction –Evolution of heat, light, and/or sound –Production of a gas –Formation of a precipitate.
3.2.3 Group 7, the Halogens.
The Halogens.
THE HALOGENS.
HALOGENS PRECIOUS.
12.6 – How can we use ions in solutions?
Oxidation Magnesium + oxygen  Magnesium oxide
Lecture 16. The Halogens PhD Halina Falfushynska.
Classification of Chemical Reactions
Group 2 and 7 revision.
Group 6 Members General comment Elements symbol Oxygen O Sulphur S
HALOGENS.
Group 7 Members General comment Elements Symbols
Topic 1 Atomic Structure and The Periodic Table
Presentation transcript:

Lecture 16. The Halogens PhD Halina Falfushynska

Group 17 elements properties The Group 17 elements are known as the halogens. All are non-metals. • The elements exist as diatomic molecules, X2. • Fluorine is the most electronegative element, and forms compounds only in the –1 oxidation state. For the other halogens the oxidation states up to +7 are also observed. Their melting and boiling points steadily increase with atomic number. • Going down the group, the elements become less oxidizing.

• Astatine is radioactive, with the longest lived isotope having a half life of only several hours. Fluorine and chlorine react with water. Bromine and iodine are only sparingly soluble in water but are soluble in various organic solvents such as chloroform, carbon tetrachloride, carbon disulphide and hydrocarbons to give coloured solutions. • The X2 bond dissociation enthalpies generally decrease going down the group, but the value for F2 is anomalously low due to a high degree of electron–electron repulsion.

Preparation of Chlorine and other halogens By heating manganese dioxide with concentrated hydrochloric acid. MnO2 + 4HCl → MnCl2 + Cl2 + 2H2O 4NaCl + MnO2 + 4H2SO4 → MnCl2 + 4NaHSO4 + 2H2O + Cl2 By the action of HCl on potassium permanganate. 2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 8H2O + 5Cl2 Deacon’s process: By oxidation of hydrogen chloride gas by atmospheric oxygen in the presence of CuCl2 (catalyst) at 723 K.

Preparation of Chlorine

Electrolytic process: Chlorine is obtained by the electrolysis of brine (concentrated NaCl solution). 2 NaCl + 2 H2O → Cl2 + H2 + 2 NaOH Cathode: 2 H+ (aq) + 2 e− → H2 (g) Anode: 2 Cl− (aq) → Cl2 (g) + 2 e−

Preparation of Chlorine and other halogens K2Cr2O7 + 6KJ +7H2SO4  4K2SO4+ Cr2(SO4)3 +3J2+ 7H2O 2NaCl + 4H2SO4 + PbO2  Cl2 + Pb(HSO4)2 + 2NaHSO4 + 2H2O 4HCl + CaOCl2  CaCl2 + 2Cl2  + 2H2O 4HCl + O2  2H2O + 2Cl2  HJO + H+ + e  1/2J2 + H2O

Preparation of Bromine 2NaBr + H2SO4 + H2O2 = Br2 + Na2SO4 + 2H2O

Reactivity towards metals They react with metals to form halides. The reactivity of the halogens decreases down the group. Mg (s) + Br2 (l) → MgBr2 (s) 2Al + 3Cl2 → 2AlCl3 The ionic character of the halides decreases in the order MF > MCl > MBr > MI where M is a monovalent metal. 2Na + Cl2  2NaCl

Reactivity towards oxygen Halogens form many oxides with oxygen but most of them are unstable. Fluorine forms two oxides OF2 and O2F2. Both are strong fluorinating agents. O2F2 oxidises plutonium to PuF6 and the reaction is used in removing plutonium as PuF6 from spent nuclear fuel. Chlorine, bromine and iodine form oxides in which the oxidation states of these halogens range from +1 to +7. Order of stability of oxides formed by halogens, I > Cl > Br. The higher oxides of halogens tend to be more stable than the lower ones.

The halogens – some reactions 1) Halogen + metal: Na + Cl - Na Cl + Halogen + metal ionic salt 2) Halogen + non-metal: Cl Cl H H + Halogen + non-metal covalent molecule

Reactivity of halogens towards other non-metals Reactivity of halogens towards other halogens Halogens combine amongst themselves to form a number of compounds known as interhalogens of the types XX ′ , XX3′, XX5′ and XX7′ where X is a larger size halogen and X’ is smaller size halogen Halogens react with a number of non-metals to form halides P4 + 6Cl2 → 4PCl3 S8 + 4Cl2 → 4S2Cl2 H2 + Cl2 → 2HCl

Reaction of Aluminium with Bromine Reaction of Aluminium with Bromine. Aluminium is oxidized by liquid bromine. Reaction of read Phosphorus with Bromine. The oxidation of red phosphorus with bromine proceeds under combustion.

Reactivity of halogens towards alkalies Reactivity towards water Reactivity of halogens towards alkalies 2NaOH + Cl2 → NaCl + NaOCl + H2O (cold and dilute) 6 NaOH + 3Cl2 → 5NaCl + NaClO3 + 3H2O (hot and conc.) With dry slaked lime it gives bleaching powder. 2Ca(OH)2 + 2Cl2 → Ca(OCl)2 + CaCl2 + 2H2O Ca(OH)2 + Cl2 → CaOCl2 + H2O When chlorine is inhaled at concentrations above 30 ppm, it begins to react with water and cells, which change it into hydrochloric acid (HCl) and hypochlorous acid (HClO) - Chlorine water. Cl2 + H2O → HCl + HClO

Oxidation of Iodide with Halogenates Oxidation of Iodide with Halogenates. The formation of iodine by oxidation of iodide with halogenates is dependent on the pH value. Disproportionation and Comproportionation of Bromine and Iodine. Aqueous solutions of bromine and iodine are disproportionated under the influence of NaOH.

A halogen oxidises halide ions of higher atomic number A halogen oxidises halide ions of higher atomic number. F2 + 2X– → 2F– + X2 (X = Cl, Br or I) Cl2 + 2X– → 2Cl– + X2 (X = Br or I) Br2 + 2I– → 2Br– + I2 The relative oxidising power of halogens can be illustrated by their reactions with water 2F2 (g) + 2H2O (l) → 4H+ (aq) + 4F− (aq) + O2 (g) X2 (g) + H2O (l) → HX (aq) + HOX (aq) ( where X = Cl or Br ) 4I− (aq) + 4H+ (aq) + O2 (g) → 2I2 (s) + 2H2O (l)

Chlorine water has strong oxidising and bleaching properties It oxidises ferrous to ferric, sulphite to sulphate, sulphur dioxide to sulphuric acid and iodine to iodic acid. 2FeSO4 + H2SO4 + Cl2 → Fe2(SO4)3 + 2HCl Na2SO3 + Cl2 + H2O → Na2SO4 + 2HCl SO2 + 2H2O + Cl2 → H2SO4 + 2HCl I2 + 6H2O + 5Cl2 → 2HIO3 + 10HCl It is a powerful bleaching agent; bleaching action is due to oxidation. Cl2 + H2O → 2HCl + O Coloured substance + O → Colourless substance

NaCl + H2SO4 → NaHSO4 + HCl (420K) Hydrogen Halides In laboratory, HCl is prepared by heating sodium chloride with concentrated sulphuric acid NaCl + H2SO4 → NaHSO4 + HCl (420K) Hydrogen Halides can also be prepared by the hydrolysis of certain reactive halide compounds. PCl5 + H2O → POCl3 + 2 HCl 2PBr3 + 6H2O → 2H3PO3 + 6HBr 2P + 3Br2 + 6H2O → 2H3PO3 + 6HBr S + 3Br2 + 4H2O → 6HBr + H2SO4

Hydrogen Chloride When three parts of concentrated HCl and one part of concentrated HNO3 are mixed, aqua regia is formed which is used for dissolving noble metals. Au + 4H+ + NO3− + 4Cl− → AuCl−4 + NO + 2H2O 3Pt + 16H+ + 4NO3 + 18Cl− → 3PtCl6− + 4NO + 8H2O Hydrogen chloride is a monoprotic acid. In aqueous hydrochloric acid, the H+ joins a water molecule to form a hydronium ion, H3O+: HCl + H2O → H3O+ + Cl−

Hydrochloric acid decomposes salts of weaker acids, e. g Hydrochloric acid decomposes salts of weaker acids, e.g., carbonates, hydrogencarbonates, sulphites, etc. Na2CO3 + 2HCl → 2NaCl + H2O + CO2 NaHCO3 + HCl → NaCl + H2O + CO2 Na2SO3 + 2HCl → 2NaCl + H2O + SO2 Hydrochloric acid is the preferred acid in titration for determining the amount of bases. Azeotropic or "constant-boiling" hydrochloric acid (roughly 20.2%) can be used as a primary standard in quantitative analysis. It is use in the pickling of steel, to remove rust or iron oxide scale from iron or steel before subsequent processing: Fe2O3 + Fe + 6 HCl → 3 FeCl2 + 3 H2O

Hydrochloric acid application Regeneration of ion exchangers. Cation exchange is widely used to remove ions such as Na+ and Ca2+ from aqueous solutions, producing demineralized water. The acid is used to rinse the cations from the resins. Hydrogen chloride is used to produce the hydrochloride salt of methamphetamine. Hydrochloric acid is used in veterinary medicine as a gastric acidifier.

Oxoacids of Halogens

The structures of oxoacids of chlorine

TESTING FOR HALIDES

Uses of Fluorine Uses of Bromine The main use of fluorine is toothpaste even though it isn’t as fluorine itself but instead as fluoride, a compound of fluorine. Bromine is one of the main ingredients in camera films (as silver bromide).

Uses of Chlorine ---for bleaching woodpulp (required for the manufacture of paper and rayon), cotton and textiles --in the extraction of gold and platinum --in the manufacture of dyes, drugs and organic compounds such as CCl4, CHCl3, DDT, refrigerants, etc. -- in sterilising drinking water ---preparation of poisonous gases such as phosgene (COCl2), tear gas (CCl3NO2), mustard gas (ClCH2CH2SCH2CH2Cl). Chlorine gas has also been used by insurgents against the local population and coalition forces in the Iraq War in the form of chlorine bombs. On March 17, 2007, for example, three chlorine filled trucks were detonated in the Anbar province killing two and sickening over 350.

Uses of Iodine When dissolved in water, iodine can be used as a strong antiseptic or as a test for starch.