Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Technische universität dortmund fakultät für informatik informatik 12 Models of computation Peter Marwedel TU Dortmund Informatik 12 Graphics: © Alexandra.
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Lehrstuhl Informatik III: Datenbanksysteme Astrometric Matching - E-Science Workflow 1 Lehrstuhl Informatik III: 1 Datenbanksysteme 1 Fakultät für Informatik.
My First Fluid Project Ryan Schmidt. Outline MAC Method How far did I get? What went wrong? Future Work.
Outdoors propagation free field (point source). The DAlambert equation The equation comes from the combination of the continuty equation for fluid motion.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Lehrstuhl Informatik III: Datenbanksysteme Grid-based Data Stream Processing in e-Science 1 Richard Kuntschke 1, Tobias Scholl 1, Sebastian Huber 1, Alfons.
Software Engineering für betriebliche Informationssysteme (sebis) Fakultät für Informatik Technische Universität München wwwmatthes.in.tum.de WebAppLabCourse.
Telecooperation/RBG Technische Universität Darmstadt Copyrighted material; for TUD student use only Introduction to Computer Science I Topic 14: Stepwise.
Fakultät für informatik informatik 12 technische universität dortmund Lab 3: Scheduling Solution - Session 10 - Heiko Falk TU Dortmund Informatik 12 Germany.
Free Particle Model Inertia,Interactions 1-D & 2-D Units IV & VI.
Fakultät für informatik informatik 12 technische universität dortmund Lab 4: Exploiting the memory hierarchy - Session 14 - Peter Marwedel Heiko Falk TU.
Fakultät für informatik informatik 12 technische universität dortmund Lab 3: Scheduling - Session 10 - Peter Marwedel Heiko Falk TU Dortmund Informatik.
Algebra Recap Solve the following equations (i) 3x + 7 = x (ii) 3x + 1 = 5x – 13 (iii) 3(5x – 2) = 4(3x + 6) (iv) 3(2x + 1) = 2x + 11 (v) 2(x + 2)
Solving Equations = 4x – 5(6x – 10) -132 = 4x – 30x = -26x = -26x 7 = x.
Lectures on CFD Fundamental Equations
Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung
1 Financial Mathematics Clicker review session, Final.
Technische Universität München Benefits of Structured Cartesian Grids for the Simulation of Fluid- Structure Interactions Miriam Mehl Department of Computer.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Lectures 11-12: Gravity waves Linear equations Plane waves on deep water Waves at an interface Waves on shallower water.
Fakultät für Informatik Technische Universität München A Visual Tool for Conflict Resolution in EA Repositories Bachelor’s Thesis kick-off presentation,
Solving Quadratic Equations – The Discriminant The Discriminant is the expression found under the radical symbol in the quadratic formula. Discriminant.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Next Class Final Project and Presentation – Prepare and me the ppt files 5-7 slides Introduce your problem (1-2 slides) – Problem – Why CFD? Methods.
COMPUTATIONAL FLUID DYNAMICS IN REAL-TIME An Introduction to Simulation and Animation of Liquids and Gases.
Elimination Day 2. When the two equations don’t have an opposite, what do you have to do? 1.
Derivation of the proportionality of velocity and radius for an object in circular motion under a constant centripetal force.
Stable, Circulation- Preserving, Simplicial Fluids Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun.
A RANS Based Prediction Method of Ship Roll Damping Moment Kumar Bappaditya Salui Supervisors of study: Professor Dracos Vassalos and Dr. Vladimir Shigunov.
Material Point Method Solution Procedure Wednesday, 10/9/2002 Map from particles to grid Interpolate from grid to particles Constitutive model Boundary.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
4.8 “The Quadratic Formula” Steps: 1.Get the equation in the correct form. 2.Identify a, b, & c. 3.Plug numbers into the formula. 4.Solve, then simplify.
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Multigrid Methods The Implementation Wei E Universität München. Ferien Akademie 19 th Sep
Forces. I. Section 1 A. Newton- (N) the SI unit for the magnitude of a force. Also called weight. B. Force- a push or a pull. Described by its magnitude.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Lab Course CFD Introduction Dr. Miriam Mehl. CFD – Applications stirrers.
Hirophysics.com Some Aspects of Numerical Solutions for Partial Differential Equations Austin Andries University of Southern Mississippi Dr. Hironori Shimoyama.
Universität Dortmund Fakultät für Mathematik IAM technische universität dortmund A numerical set-up for benchmarking and optimization of fluid-structure.
SIGGRAPH 2005 신 승 호 신 승 호. Water Drops on Surfaces Huamin Wang Peter J. Mucha Greg Turk Georgia Institute of Technology.
Modelling of Marine Systems. Shallow waters Equations.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Scientific Computing Lab
Scientific Computing Lab
StreamGlobe: P2P Stream Sharing
Pressure Poisson Equation
Objective Review Reynolds Navier Stokes Equations (RANS)
1.
Scientific Computing Lab
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac
Scientific Computing Lab
Outdoors propagation free field (point source)
Solving Equations 3x+7 –7 13 –7 =.
12. Navier-Stokes Applications
Particle-in-Cell Methods
Scientific Computing Lab
Spatial Discretisation
Example Make x the subject of the formula
Analysis of engineering system by means of graph representation
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 7/24/2019
Solving Equations Challenge Answers
Presentation transcript:

Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias Neckel,

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Examples

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Domain Representation imaginary fluid particles –fluid cell: #particles 1 –empty cell: #particles = 0 –obstacle cell

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Domain Representation II

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Boundary Values edges between surface and empty cells ( ) edges between two empty cells at corner of surface cells ( ) pressure in surface cells (x)

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Boundary Conditions equlibrium: surface tension surface stress neglection of surface tension zero stress components

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Discrete Boundary Conditions 5 types of surface cells discrete stress = 0 auxiliary construct: gravity compute values only once!

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Surface Cell Type I 1 empty neighbour

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Surface Cell Type II 2 empty neighbours, across

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Surface Cell Type III 2 empty neighbours, opposite

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Surface Cell Type IV 3 empty neighbours

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Surface Cell Type V 4 empty neighbours

Technische Universität München Tobias Neckel Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD, ST 2007 Algorithm (Time Step) (1)compute time step dt (particle positions) (2)mark fluid/surface/empty cells (3)set boundary values (+ free surface!) (4)compute preliminary velocities (5)solve pressure equation (6)compute final velocities (+ free surface!)