CHAPTER 9 Patterns of Inheritance

Slides:



Advertisements
Similar presentations
Chapter 10: Mendel and Meiosis September
Advertisements

Genetics: an Introduction
Patterns of Inheritance aka Genetics Parents pass heritable traits to offspring (genes) Gregor Mendel –1860’s, Austrian monk experimented with garden peas.
Ch 14 Gregor Mendel and Inheritance Study Began research late 1850’s St. Thomas (Augustinian) monastery, Brno, Yugoslavia.
Mendelian Genetics. What Came Before? Blending Inheritance Inheritance of Acquired Characteristics.
Biology Unit 8 Review: Heredity
MENDELIAN GENETICS. OBJECTIVES Understand Mendel’s principles governing genetics Understand meaning of relevant vocabulary Predict results of mono/dihybrid.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The science of heredity dates back to ancient attempts at selective breeding Parents.
Genetics Genetics is the scientific study of heredity and variation.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred—
Mendel and the Idea of the Gene
Mendelian Patterns of Inheritance
CHAPTER 9 Patterns of Inheritance. Genetic testing –Allows expectant parents to test for possibilities in their unborn child. –Includes amniocentesis.
CHAPTER 9 Patterns of Inheritance
NOTES: Chapter 14, part 1 – Mendelian Genetics!!
Genetics Genetics is the scientific study of heredity and variation.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece.
Ch. 9 Patterns of Inheritance
Patterns of Inheritance
Patterns of Inheritance
Gregor Mendel Genetics- the scientific study of heredity Mendel was an Austrian monk who wanted to understand genetics. Mendel.
Chapter 9 Table of Contents Section 1 Mendel’s Legacy
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Pea plants have several advantages for genetics.
The Chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes form parent to offspring Heredity Part.
Patterns of Inheritance genetics—the branch of biology that studies heredity.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Exploring Mendelian Genetics. Law of Independent Assortment Does the segregation of one pair of alleles affect the segregation of another pair of alleles?
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2009 Pearson Education, Inc. Lectures by Gregory Ahearn University of North Florida Chapter 9 Patterns of Inheritance.
Exploring Mendelian Genetics. Independent Assortment Does the segregation of one pair of alleles affect the segregation of another pair of alleles? –Mendel.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 14.1: Mendel used the scientific approach to identify two laws of inheritance.
Chapter 14 Mendel and the Gene Idea. The “ blending ” hypothesis is the idea that genetic material from the two parents blends together (like blue and.
Genetics the scientific study of heredity.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
Chapter 9 Patterns of Inheritance. MENDEL’s LAW The science of genetics has ancient roots Pangenesis, proposed around 400 B.C. by Hippocrates, was an.
Genetics and Heredity (Mendelian). History Genetics is the study of genes. Genetics is the study of genes. Inheritance is how traits, or characteristics,
6.3 Mendel and Heredity KEY CONCEPT Mendel’s research showed that traits are inherited as discrete units.
Patterns of Inheritance Mendelian Genetics. Mendel’s Principles 1. Principle of Segregation 2. Principle of Independent Assortment Punnett Squares and.
Chapter ,9.5, Homologous chromosomes bear the alleles for each character P P a a B b PP aa Bb Dominant allele Recessive allele Gene.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Mendelian Genetics Chapter 10/ Section 2. Mendelian Genetics Copyright © McGraw-Hill Education Gregor Mendel: The Father of Genetics The passing of traits.
Chapter Introduction – Over thousands of years, humans have chosen and mated dogs with specific traits. – The result has been an incredibly diverse.
© 2013 Pearson Education, Inc. Lectures by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential.
PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Chapter 9 Lecture by Edward J. Zalisko Patterns.
Gregor Mendel Genetics- the scientific study of heredity Mendel was an Austrian monk who wanted to understand genetics. Mendel.
Patterns of Inheritance Chapter 9. Genetics The science of heredity. A distinct genetic makeup results in a distinct set of physical and behavioral characteristics.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance.
Chapter 9. Vocabulary  Heredity: the transmission of traits from one generation to the next  Genetics: the scientific study of heredity  Character:
Mendel and the Gene Idea. Gregor Mendel: The Man  Austrian monk  Began breeding peas in 1857 to study inheritance  Kept very accurate records of his.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred—
Patterns of Inheritance
Chapter 14 Mendel and the Gene Idea.
Mendel & the gene idea Fig. 14-1
Gregor Mendel And The Genetic Revolution
Mendel and the Gene Idea
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
Mendel and the Gene Idea
Mendel and the Gene Idea
General Animal Biology
Lesson 6.1 Mendel’s Experiments.
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
General Animal Biology
Introduction to Genetics
MENDEL AND THE GENE IDEA Section A: Gregor Mendel’s Discoveries
Presentation transcript:

CHAPTER 9 Patterns of Inheritance Modules 9.1 – 9.10

Purebreds and Mutts — A Difference of Heredity Genetics is the science of heredity These black Labrador puppies are purebred—their parents and grandparents were black Labs with very similar genetic makeups Purebreds often suffer from serious genetic defects

canine hip dysplasia

The parents of these puppies were a mixture of different breeds Their behavior and appearance is more varied as a result of their diverse genetic inheritance

9.1 The science of genetics has ancient roots MENDEL’S PRINCIPLES 9.1 The science of genetics has ancient roots The science of heredity dates back to ancient attempts at selective breeding Until the 20th century, however, many biologists erroneously believed that characteristics acquired during lifetime could be passed on characteristics of both parents blended irreversibly in their offspring

The inheritance of acquired characters (or characteristics) is the hereditary mechanism by which changes in physiology acquired over the life of an organism (such as muscle enlarged through use) are purportedly transmitted to offspring. It is also commonly referred to as the theory of adaptation equated with the evolutionary theory of French naturalist Jean-Baptiste Lamarck (1744-1829).

Genetic Disproof There are many formulations of the genetic disproof, but all have roughly the same structure as the following: Acquired traits do not affect an organism's genome. Only the genome is passed to the offspring. Therefore, acquired traits cannot be passed to the offspring.

9.2 Experimental genetics began in an abbey garden Modern genetics began with Gregor Mendel’s quantitative experiments with pea plants Stamen Carpel Figure 9.2A, B

This illustration shows his technique for cross-fertilization Mendel crossed pea plants that differed in certain characteristics and traced the traits from generation to generation White 1 Removed stamens from purple flower Stamens Carpel 2 Transferred pollen from stamens of white flower to carpel of purple flower PARENTS (P) Purple 3 Pollinated carpel matured into pod This illustration shows his technique for cross-fertilization 4 Planted seeds from pod OFF-SPRING (F1) Figure 9.2C

Mendel studied seven pea characteristics FLOWER COLOR Purple White FLOWER POSITION Axial Terminal He hypothesized that there are alternative forms of genes (although he did not use that term), the units that determine heredity SEED COLOR Yellow Green SEED SHAPE Round Wrinkled POD SHAPE Inflated Constricted POD COLOR Green Yellow STEM LENGTH Figure 9.2D Tall Dwarf

Punnett Squares Professor Reginald Crundall Punnett, FRS (June 20, 1875 – January 3, 1967) was a British geneticist who co-founded, with William Bateson, the Journal of Genetics in 1910. Punnett is probably best remembered today as the creator of the Punnett square, a tool still used by biologists to predict the probability of possible genotypes of offspring. His Mendelism (1905) is sometimes said to have been the first textbook on genetics; it was probably the first popular science book to introduce genetics to the public.

3/4 of plants have purple flowers 1/4 of plants have white flowers 9.3 Mendel’s principle of segregation describes the inheritance of a single characteristic From his experimental data, Mendel deduced that an organism has two genes (alleles) for each inherited characteristic One characteristic comes from each parent P GENERATION (true-breeding parents) Purple flowers White flowers All plants have purple flowers F1 generation Fertilization among F1 plants (F1 x F1) F2 generation 3/4 of plants have purple flowers 1/4 of plants have white flowers Figure 9.3A

GENETIC MAKEUP (ALLELES) A sperm or egg carries only one allele of each pair GENETIC MAKEUP (ALLELES) P PLANTS PP pp Gametes All P All p The pairs of alleles separate when gametes form This process describes Mendel’s 1. Law of segregation 2. Alleles can be dominant or recessive F1 PLANTS (hybrids) All Pp Gametes 1/2 P 1/2 p P P Eggs Sperm PP F2 PLANTS p p Pp Pp Phenotypic ratio 3 purple : 1 white pp Genotypic ratio 1 PP : 2 Pp : 1 pp Figure 9.3B

9.4 Homologous chromosomes bear the two alleles for each characteristic Alternative forms of a gene (alleles) reside at the same locus on homologous chromosomes- One allele is dominant over the other with regard to Mendelian Traits. GENE LOCI DOMINANT allele P a B P a b RECESSIVE allele GENOTYPE: PP aa Bb HOMOZYGOUS for the dominant allele HOMOZYGOUS for the recessive allele HETEROZYGOUS Figure 9.4

9.5 The principle of independent assortment is revealed by tracking two characteristics at once By looking at two characteristics at once, Mendel found that the alleles of a pair segregate independently of other allele pairs during gamete formation This is known as: 3. Principle of independent assortment

HYPOTHESIS: DEPENDENT ASSORTMENT HYPOTHESIS: INDEPENDENT ASSORTMENT RRYY rryy P GENERATION RRYY rryy Gametes RY ry Gametes RY ry F1 GENERATION RrYy RrYy Eggs 1/2 RY 1/2 RY Sperm Eggs 1/4 RY 1/4 RY 1/2 ry 1/2 ry 1/4 rY 1/4 rY RRYY 1/4 Ry 1/4 Ry RrYY RrYY F2 GENERATION 1/4 ry 1/4 ry RRYy rrYY RrYy RrYy RrYy RrYy RrYy Yellow round 9/16 Actual results contradict hypothesis Green round rrYy RRyy rrYy 3/16 ACTUAL RESULTS SUPPORT HYPOTHESIS Rryy Rryy Yellow wrinkled 3/16 Yellow wrinkled rryy 1/16 Figure 9.5A

Independent assortment of two genes in the Labrador retriever Blind Blind PHENOTYPES Black coat, normal vision B_N_ Black coat, blind (PRA) B_nn Chocolate coat, normal vision bbN_ Chocolate coat, blind (PRA) bbnn GENOTYPES MATING OF HETEROZYOTES (black, normal vision) BbNn BbNn PHENOTYPIC RATIO OF OFFSPRING 9 black coat, normal vision 3 black coat, blind (PRA) 3 chocolate coat, normal vision 1 chocolate coat, blind (PRA) Figure 9.5B

http://www.athro.com/evo/gen/punexam.html

A dihybrid cross

The Female Calico Cat-X-Linked Calico coloring is a mix of phaeomelanin based colors (red) and eumelanin based color (black, chocolate and cinnamon). Cats of this coloration are believed to bring good luck in the folklore of many cultures.[1] The spotting gene causes white patches to cover the colored fur

4 Sex-Linked Traits:  1. Normal Color Vision:  A: 29,  B: 45,  C: --,  D: 26  2. Red-Green Color-Blind:  A: 70,  B: --,  C: 5,  D: --  3. Red Color-blind:  A: 70,  B: --,  C: 5,  D: 6  4. Green Color-Blind:  A: 70,  B: --,  C: 5,  D: 2

9.6 Geneticists use the testcross to determine unknown genotypes The offspring of a testcross often reveal the genotype of an individual when it is unknown TESTCROSS: GENOTYPES B_ bb Two possibilities for the black dog: BB or Bb B B b GAMETES b Bb b Bb bb Figure 9.6 OFFSPRING All black 1 black : 1 chocolate

Most such disorders are caused by autosomal recessive alleles 9.9 Connection: Many inherited disorders in humans are controlled by a single gene Most such disorders are caused by autosomal recessive alleles Examples: cystic fibrosis, sickle-cell disease Normal Dd Normal Dd PARENTS D D Eggs Sperm DD Normal d d Dd Normal (carrier) Dd Normal (carrier) OFFSPRING dd Deaf Figure 9.9A

9.7 Mendel’s principles reflect the rules of probability Inheritance follows the rules of probability The rule of multiplication and the rule of addition can be used to determine the probability of certain events occurring F1 GENOTYPES Bb female Bb male Formation of eggs Formation of sperm 1/2 B B 1/2 B B 1/2 b b 1/2 1/4 b B B b 1/4 1/4 b b F2 GENOTYPES 1/4 Figure 9.7

9.8 Connection: Genetic traits in humans can be tracked through family pedigrees The inheritance of many human traits follows Mendel’s principles and the rules of probability OMIM- http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim Figure 9.8A

Family pedigrees are used to determine patterns of inheritance and individual genotypes Dd Joshua Lambert Dd Abigail Linnell D_ John Eddy ? D_ Hepzibah Daggett ? D_ Abigail Lambert ? dd Jonathan Lambert Dd Elizabeth Eddy Dd Dd dd Dd Dd Dd dd Female Male Deaf Figure 9.8B Hearing

A few are caused by dominant alleles Examples: achondroplasia, Huntington’s disease Figure 9.9B