Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.

Slides:



Advertisements
Similar presentations
Solve the system of inequalities by graphing. x ≤ – 2 y > 3
Advertisements

Advanced Algebra Chapter 3
Section 3.4 Systems of Equations in 3 Variables
Linear Programming Unit 2, Lesson 4 10/13.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
3-6 Solving Systems of Linear Equations in Three Variables Objective: CA 2.0: Students solve systems of linear equations and inequalities in three variables.
3.5 Solving Systems of Equations in Three Variables
The Graphing Method Topic
Chapter 5 Linear Inequalities and Linear Programming Section R Review.
5.3 Systems of Linear Equations in Three Variables
Thinking Mathematically Algebra: Graphs, Functions and Linear Systems 7.3 Systems of Linear Equations In Two Variables.
C OMPLETE #1-11 O DD ON P AGE 150 UNDER THE P REREQUISITE S KILLS T AB.
3.1 Solve Linear Systems by Graphing. Vocabulary System of two linear equations: consists of two equations that can be written in standard or slope intercept.
Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.
Solving Linear Systems by graphing
Advanced Algebra Notes
Systems of Linear Equations and Inequalities (Chapter 3)
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 4 Systems of Linear Equations and Inequalities.
SOLVING SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Systems of Inequalities in Two Variables Sec. 7.5a.
Linear Programming: A Geometric Approach3 Graphing Systems of Linear Inequalities in Two Variables Linear Programming Problems Graphical Solution of Linear.
SYSTEMS OF LINEAR EQUATIONS SUBSTITUTION AND ELIMINATION Objectives: Solve Systems of Equations by Substitution and Elimination Identify Inconsistent Systems.
Free Powerpoint Templates Page 1 Free Powerpoint Templates 3.1 Solving Linear Systems by Graphing.
Linear Programming Problem. Definition A linear programming problem is the problem of optimizing (maximizing or minimizing) a linear function (a function.
3.2 Solving Linear Systems Algebraically p Methods for Solving Algebraically 1.Substitution Method (used mostly when one of the equations has.
Alg 2 - Chapter 3 Jeopardy Solving Systems by Graphing Solving Systems Algebraically Graph & Solving Systems of Linear Inequalities Linear Programming.
3-2 Solving Linear Systems Algebraically Objective: CA 2.0: Students solve system of linear equations in two variables algebraically.
1.1 Solving Linear Systems by Graphing 9/14/12. Solution of a system of 2 linear equations: Is an ordered pair (x, y) that satisfies both equations. Graphically,
Class Opener: Solve each equation for Y: 1.3x + y = y = 2x 3.x + 2y = 5 4. x – y = x + 3y = x – 5y = -3.
Chapter 2 Systems of Linear Equations and Inequalities.
Chapter 4: Systems of Equations and Inequalities Section 4.7: Solving Linear Systems of Inequalities.
MATH 416 Equations & Inequalities II. Graphing Systems of Equations The graphic method to solve a system of equations consists in determining the coordinates.
EXAMPLE 4 Solve linear systems with many or no solutions Solve the linear system. a.x – 2y = 4 3x – 6y = 8 b.4x – 10y = 8 – 14x + 35y = – 28 SOLUTION a.
Tuesday, October 15, 2013 Do Now:. 3-1 Solving Systems of Equations by Graphing Objectives: 1)solve systems of linear equations by graphing 2) Determine.
Section 4.2 Solving Systems of Equations by Substitution.
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Linear Programming: A Geometric Approach3 Graphing Systems of Linear Inequalities in Two Variables Linear Programming Problems Graphical Solution of Linear.
CHAPTER THREE: SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES ALGEBRA TWO Section Solving Systems of Linear Equations in Three Variables.
Solving Systems of Linear Equations in 2 Variables Section 4.1.
Linear Programming Chapter 3 Lesson 4 Vocabulary Constraints- Conditions given to variables, often expressed as linear inequalities. Feasible Region-
7.1 Solving Systems of Equations by Graphing
Copyright © Cengage Learning. All rights reserved.
Linear Systems Chapter 3.
Solving Systems of Equations by Graphing
3.2 Linear Programming 3 Credits AS
Chapter 5 Linear Inequalities and Linear Programming
3-3 Optimization with Linear Programming
Linear Programming.
8.4 Linear Programming p
3.1 Solving Linear Systems by Graphing
Chapter 3 Section 1 Systems of Linear Equations in Two Variables All graphs need to be done on graph paper. Four, five squares to the inch is the best.
Graphical Solution of Linear Programming Problems
Systems of linear equations substitution and elimination
Section Solving Linear Systems Algebraically
Chapter 6 Vocabulary (6-1)
Section Graphing Linear Equations in Three Variables
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Chapter 8 Systems of Equations
Section Linear Programming
1.2 Solving Linear Systems by Graphing
Chapter 9 Lesson 3 Pg. 699 Solving Systems of Equations by Graphing
Solving systems of 3 equations in 3 variables
3.2 Solving Linear Systems Algebraically
Chapter 9 Lesson 3 Pg. 699 Solving Systems of Equations by Graphing
Chapter 5 Review.
Solving Linear Systems by Graphing
Presentation transcript:

Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities

A system of 2 linear equations in 2 variables, x & y consists of 2 equations of the following form: A x + B y = C D x + E y = F A, B, C, D, E and F all represent constant values. A solution of a system of linear equations in 2 variables is an ordered pair (x,y) that satisfies both equations. Example 1: Checking solutions of a linear system. Are ( 2, 2 ) and ( 0, − 1 ) solutions of the following system: 3 x – 2 y = 2 x + 2 y = 6 3 x – 2 y = 2 x + 2 y = 6 3 ( 2 ) – 2 ( 2 ) = 2 ( 2 ) + 2 ( 2 ) = 6 6 – 4 = = 6 2 = 2√ 6 = 6 √ 3 x – 2 y = 2 x + 2 y = 6 3 ( 0 ) – 2 (− 1 ) = 2 ( 0 ) + 2 (− 1 ) = = 2 0 − 2 = 6 2 = 2√ − 2 ≠ 6 Solution works for both Solution does NOT work for both Solving Linear Systems by Graphing 3.1

x2 x – 3 y = 1yx x + y = 3y 02 (0) – 3 y = 1 – 3 y = 1 − y = x – 3 (0) = 103x + 0 = 30 2 x – 3 y = 1 x + y = 3 ( 2, 1 ) 2 x – 3 y = 1 2 ( 2 ) – 3 ( 1 ) = 1 4 – 3 = 1 1 = 1 √ x + y = = 3 3 = 3 √ Solving Linear Systems by Graphing 3.1

Graphical Interpretation Algebraic Interpretations The graph of the system is a pair of lines that intersect in 1 point The system has exactly 1 solution The graph of the system is a single lineThe system has infinitely many solutions The graph of the system is a pair of parallel lines so that there is no point of intersection The system has no solution Exactly 1 solutionInfinitely many solutionsNo solution Number of Solutions of a Linear System 3.1

Substitution Method: 1.Solve for one equation 2.Substitute the expression from step 1 into the other equation, then solve for the other variable 3.Substitute the value from step 2 into the revised equation from step 1, then solve Substitution Method: 1.Solve for one equation 2.Substitute the expression from step 1 into the other equation, then solve for the other variable 3.Substitute the value from step 2 into the revised equation from step 1, then solve Example 1: 3 x + 4 y = − 4[1 st equation ] x + 2 y = 2[2 nd equation ] 1)Solve for x in equation 2 x + 2 y = 2 − 2 y − 2 y x = − 2 y + 2 2)Substitute 3 x + 4 y = − 4 3 (− 2 y + 2 ) + 4 y = − 4 − 6 y y = − 4 − 2 y + 6 = − 4 − 2 y = − 10 y = 5 3). Use value for y to get x: x = − 2 y + 2 x = − 2 ( 5 ) + 2 x = − = − 8 Check: 3 x + 4 y = − 4 3 (− 8 ) + 4 (5 ) = − 4 − = − 4 √ − 4 = − 4 √ Solving Linear System Algebraically 3.2

7 x − 12 y = − 22 − 5 x + 8 y = 14 2 [ 7 x − 12 y = − 22 ] 3 [− 5 x + 8 y = 14 ] 14 x − 24 y = − 44 − 15 x + 24 y = 42 − 1 x = − 2 x = 2 − 5 x + 8 y = 14 − 5 (2) + 8 y = 14 − y = 14 8 y = 24 y = 3 ( x, y ) ( 2, 3 ) Check: 7 x − 12 y = − 22 7 ( 2 ) − 12 ( 3 ) = − − 36 = − 22 √ − 22 = − 22 √ Solving Linear System Algebraically Linear Combination Method: 3.2

2 x + 3 y = 5 x − 5 y = 9 x = 5 y ( 5 y + 9 ) + 3 y = 5 10 y y = 5 13 y + 18 = 5 13 y = − 13 y = − 1 Check: 2 x + 3 y = 5 2 (4) + 3 ( − 1 ) = 5 8 − 3 = 5 √ 5 = 5 √ x − 5 y = 9 x − 5 (− 1) = 9 x + 5 = 9 x = 9 − 5 x = 4 3 x + 5 y = − 16 3 x − 2 y = − 9 − 1 [ ] 3 x + 5 y = − 16 − 3 x + 2 y = y = − 7 y = − 1 3 x + 5 (− 1) = − 16 3 x − 5 = − 16 3 x = − 11 x = − 11 3 Check: 3 x + 5 y = − 16 3 (− 11 ) + 5 (− 1) = − 16 3 − 11 − 5 = − 16 √ − 16 = − 16 √ ( x, y ) (− 11, − 1 ) 3 Solving Linear System Algebraically Linear Combination Method: Substitution Method: 3.2

y ≥ ─ 3 x ─ 1 xy 0−1 3 0 Test ( 0, 0 ) > y > ─ 3 x ─ 1 > 0 > ─ 3 ( 0 ) ─ 1 > √ 0 > ─ 1 √ y < x + 2 xy 02 − 20 Test ( 0, 0 ) y < x < ( 0 ) + 2 √ 0 < 2 √ y = ─ 3 x ─ 1 y = x + 2 BLUE ONLY BOTH RED & BLUE NEITHER RED nor BLUE A solution of a system of linear inequalities is an ordered pair that is a solution of each inequality in the system or a coordinate in BOTH solutions of each inequality y < x + 2 y ≥ ─ 3 x ─ 1 RED ONLY Graphing and Solving of Linear Inequalities 3.3

x ≥ 0 y ≥ 0 4 x + 3 y ≤ 24 x ≥ 0 y ≥ 0 4 x + 3 y ≤ 24 Test Point (2, 2) 2 ≥ 0 √ 4 (2) + 3 (2) ≤ ≤ ≤ ≤ 24 √ 14 ≤ 24 √ Graphing a System of 3 Inequalities 3.3

Real life problems involve a process called OPTIMIZATION = finding the maximum or minimum value of some quantity. Linear Programming is the process of optimizing a linear objective function subject to a system of linear inequalities called constraints. The graph of the system of constraints is called the feasible region. Optimal solution of a Linear Programming problem If an objective function has a maximum or a minimum value, then it must occur at a vertex of the feasible region. If the objective function is bounded,, then it has both a maximum and a minimum value. Optimal solution of a Linear Programming problem If an objective function has a maximum or a minimum value, then it must occur at a vertex of the feasible region. If the objective function is bounded,, then it has both a maximum and a minimum value. Bounded Region Unbounded Region Linear Programming (a type of optimization) 3.4

Optimum value, maximum or minimum, occur at vertices of a feasible region. Maximum = (3.6) or C = 2 x + 4 y “R” C = 2 (3) + 4 (6) “R” C = 2 (3) + 4 (6) C = = 30 C = = 30 Minimum = (0.0) or C = 2 x + 4 y “O” C = 2 (0) + 4 (0) “O” C = 2 (0) + 4 (0) C = = 0 C = = 0 C = 2 x + 4 y (0,5)(0,5)(0,5)(0,5) (0,0)(0,0)(0,0)(0,0) (6,0)(6,0)(6,0)(6,0) (3,6)(3,6)(3,6)(3,6) O P R V (0,5)(0,5)(0,5)(0,5) “P” C = 2 (0) + 4 (5) C = = 20 C = = 20 (6,0) “V” C = 2 (6) + 4 (0) C = = 12 C = = 12 Optimum Value of a Feasible Region feasible region 3.4

(8,0)(8,0)(8,0)(8,0) (0,8)(0,8)(0,8)(0,8) (0,0)(0,0)(0,0)(0,0) Objective Function: C = 3 x + 4 y x ≥ 0 Contraints: y ≥ 0 x + y ≤ 8 { Vertices: C = 3 x + 4 y (0,0) C = 3 (0) + 4 (0) = 0 (8,0) C = 3 (8) + 4 (0) = 24 (0,8) C = 3 (0) + 4 (8) = 32 minimum value maximum value Find Maximum and Minimum Values Ex 1 3.4

(6,0)(6,0)(6,0)(6,0) (0,5)(0,5)(0,5)(0,5) (2,3)(2,3)(2,3)(2,3) Objective Function: C = 5 x + 6 y x ≥ 0 y ≥ 0 Contraints: y ≥ 0 x + y ≥ 5 x + y ≥ 5 3x + 4 y ≥ 18 { Vertices: C = 5 x + 6 y (0,5) C = 5 (0) + 6 (5) = 30 (2,3) C = 5 (2) + 6 (3) = 28 (6,0) C = 5 (6) + 6 (0) = 30 minimum value No maximum value x + y = 5 3x + 4y = 18 x = 0 Unbounded Region y = 0 y = 0 Find Maximum and Minimum Values Ex 2 3.4

(5, 3, ─ 4 ) + y + x + z ─ z─ z─ z─ z ─ x─ x─ x─ x ─ y─ y─ y─ y ( x, y, z ) 5 ─ 4 3 ( x, y, z ) is an ordered triple, where 3 axes, taken 2 at a time, determine 3 coordinate planes that divide into eight octants. Graphing Linear Equations in 3 variables 3.5

(3, ─ 4, ─ 2 ) + y + x + z ─ z─ z─ z─ z ─ x─ x─ x─ x ─ y─ y─ y─ y ( x, y, z ) 3 ─ 4 ─ 2 Linear equation in three variables, ( x, y, z ), is an ordered equation of the form: A x + B y + C z = D [Where A, B, C and D are constants] [Where A, B, C and D are constants] Linear equation in three variables, ( x, y, z ), is an ordered equation of the form: A x + B y + C z = D [Where A, B, C and D are constants] [Where A, B, C and D are constants] The graph of a an ordered triple is a plane. Graphing Linear Equations in 3 variables 3.5

(4, ─ 6, 3 ) and (─ 7, 5, ─ 2) Plot points (4, ─ 6, 3 ) and (─ 7, 5, ─ 2) + y + x + z ─ z─ z─ z─ z ─ x─ x─ x─ x ─ y─ y─ y─ y 4 (4, ─ 6, 3 ) ─ 7 ─ ─ 2 (─ 7, 5, ─ 2)

(0, 7, 0) (0, 0, 4) (─ 5,, 0, 0) (0, 0, ─ 5) (0, ─ 7, 0) (9, 0, 0) + y ─ y─ y─ y─ y + x ─ x─ x─ x─ x ─ z─ z─ z─ z + z

A B C D EF ( 3, 4, 2 ) ( x, y, z ) A = (,, ) B = (,, ) C = (,, ) D = (,, ) E = (,, ) F = (,, ) + y ─ y─ y─ y─ y + x ─ x─ x─ x─ x ─ z─ z─ z─ z + z

A B C D EF ( 3, 4, 2 ) ( x, y, z ) A = (,, ) B = (,, ) C = (,, ) D = (,, ) E = (,, ) F = (,, ) + y ─ y─ y─ y─ y + x ─ x─ x─ x─ x ─ z─ z─ z─ z + z 3.5

(0, 6, 0) (0, 0, 3) (4,, 0, 0) + y ─ y─ y─ y─ y + x ─ x─ x─ x─ x ─ z─ z─ z─ z + z 3.5

(0, 6, 0) (0, 0, 3) (4,, 0, 0) + y ─ y─ y─ y─ y + x ─ x─ x─ x─ x ─ z─ z─ z─ z + z 3 x + 2 y + 4 z = 12 XYZ NOTES: Page 41, Section 3.5 Graphing Linear Equations in three variables ( 3 dimensions ) 3.5

3 x + 2 y + 4 z = 12 – 3 x – 2 y – 3 x – 2 y 4 z = 12 – 3 x – 2 y 4 z = 12 – 3 x – 2 y z = 12 – 3 x – 2 y z = 12 – 3 x – 2 y 4 f (x,y) = 12 – 3 x – 2 y f (x,y) = 12 – 3 x – 2 y 4 3 x + 2 y + 4 z = 12 Replace z with f (x,y) z = f (1, 3 ) = 12 – 3 x – 2 y Evaluate function when x = 1 and y = 3 z = f (1, 3 ) = 12 – 3 x – 2 y 4 4 z = f (1, 3 ) = 12 – 3 (1) – 2 ( 3) 4 4 z = f (1, 3 ) = 12 – 3 – 6 = Graph has a solution = (1, 3, 3 ) 4 Evaluating a function of 2 variables as a function of x & y 3.5

1.If 3 planes intersect at a single point, the system has 1 solution 2.If 3 planes intersect in a line, the system has infinitely many solutions 3.If 3 planes have no point of intersection, the system has no solution Linear Combination Method: 1.Rewrite the linear system from 3 variables to 2 variables 2.Solve the new linear system for both of its variables 3.Substitute values found in step 2 into the original equation and solve for the remaining variable Linear Combination Method: 1.Rewrite the linear system from 3 variables to 2 variables 2.Solve the new linear system for both of its variables 3.Substitute values found in step 2 into the original equation and solve for the remaining variable If you obtain an identity, such as 0 = 0, then the system has infinitely many solutions If you obtain an identity, such as 0 = 1, in any of the steps, then the system has no solution Graphing Linear Equations in 3 variables 3.5

+ z 3 x + 2 y + 4 z = 11 z 2 x − y + 3 z = 4 z 5 x − 3 y + 5 z = − 1 { { + z 3 x + 2 y + 4 z = 11 z 2 (2 x − y + 3 z = 4)→→ z − 3 ( 2 x − y + 3 z = 4 ) z 5 x − 3 y + 5 z = − 1→→ + z 3 x + 2 y + 4 z = 11 z 4 x − 2 y + 6 z = 8 z − 6 x + 3 y − 9 z = − 12 z 5 x − 3 y + 5 z = − 1 z 7 x + 10 z = 19 z − x − 4 z = − 13 z 7 x + 10 z = 19 z 7 ( − x − 4 z = − 13) →→ z 7x + 10 z = 19 z − 7x − 28 z = − 91 z − 18 z = − 72 z = 4 z 7x + 10 z = 19 (4) 7x + 10 (4) = 19 7x + 40 = 19 7x = − 21 x = − 3 z 2 x − y + 3 z = 4 y = 2 ( x, y, z ) (− 3, 2, 4 ) − 3) (4) 2 (− 3) − y + 3 (4) = 4 − 6 − 6 − y + 12 = 4 − y + 6 = 4 − y = − 2 Solving Systems Using Linear Combination ( 1 solution ) 3.6