MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.

Slides:



Advertisements
Similar presentations
Geminis Future AO Program A Decade of AO Evolution at Gemini Recent AO Program Highlights Doug Simons Gemini Observatory.
Advertisements

Chronicling the Histories of Galaxies at Distances of 1 to 20 Mpc: Simulated Performance of 20-m, 30-m, 50-m, and 100-m Telescopes Knut Olsen, Brent Ellerbroek,
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
1 Can we afford to build an extremely large groundbased diffraction limited optical/IR telescope? Jim Oschmann Francois Rigaut Mike Sheehan Larry Stepp.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
Extragalactic AO Science James Larkin AOWG Strategic Planning Meeting September 19, 2004.
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.
ELT Stellar Populations Science Near IR photometry and spectroscopy of resolved stars in nearby galaxies provides a way to extract their entire star formation.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
Widening the Scope of Adaptive Optics Matthew Britton.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
Adaptive Optics Road Map An Adaptive Optics Road Map Presentation to the AURA Board 7 February 2001 A Renaissance in Groundbased IR (even Optical) Astronomy?
1 HST Status Cycle 14 TAC/Panels 14 March Telescope and Instrument Status Telescope and support systems are all working well – no unexpected limitations.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Adaptive Optics in the VLT and ELT era Beyond Basic AO
The Effect of Crowding on the GSMT Stellar Populations Science Case Knut Olsen, Bob Blum (NOAO), François Rigaut (Gemini) GSMT SWG Presentation Hilo 2002.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
Gemini AO Program October 21, 1999Gemini Science Committee1 The Gemini Adaptive Optics Program MCAO for Gemini-South Gemini Adaptive Optics Team B. Ellerbroek.
GLAO simulations at ESO European Southern Observatory
AO4ELT - Paris Giant Magellan Telescope Project Science Drivers & AO Requirements Patrick McCarthy - GMT Director Phil Hinz & Michael Hart - GMT.
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics Mt. Hamilton Visitor’s Night July 28, 2001.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
MAXAT-II Woods Hole September Overview Science Drivers Lessons of the past Focusing on Science and Innovation.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
Future Plan of Subaru Adaptive Optics
MCAO System Modeling Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Modeling objectives and approach Updated.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Introduction of RAVEN Internal meeting on future instrument projects at Subaru Shin Oya ( Subaru Telescope/NAOJ) ‏ Hilo.
Technology Development for ELTs Doug Simons GSMT SWG April 28, 2003.
Gemini AO Program SPIE Opto-Southwest September 17, 2001 Ellerbroek/Rigaut [SW01-114] AO … for ELT’s 1 Adaptive Optics Requirements, Concepts, and Performance.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Atmospheric Turbulence: r 0,  0,  0 François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Adaptive Optics in the.
AURA New Initiatives Office. GSMT SWG Meeting L. Stepp, July 30, 2002 NSF Science Working Group Support Available from AURA NIO Available Personnel Current.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Forming High Mass Stars Probing the Formation Epoch.
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Page 1 Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Lecture 14 AO System Optimization
Pyramid sensors for AO and co-phasing
Resolving the black hole - nuclear cluster - spheroid connection
Comparative Performance of a 30m Groundbased GSMT and a 6
Probing the IMF Star Formation in Massive Clusters.
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002

December 4,2002GSMT SWG2 UH-88”, Courtesy W.Brandner, 0.65” seeing Filters: H K’ CO CO cont. 4’ IRS7 SgrA* >10 stars per arcsec 2 at K~18 Bow shock Very high extinction clouds 40” 5” >220 stars in 5”x5” IRS8 (bow shock)

December 4,2002GSMT SWG3 Arches Cluster 2.2 micron image. Young Star cluster in Galactic center region (10 Million years old) –Up-left: HST/NICMOS –Up-right: Gemini/Hokupa’a –Lower-right: Gemini/seeing 0.5”

December 4,2002GSMT SWG4 Gemini goes ~ 5-10x deeper Angular Resolution : –HST = 0.19” –Gemini = 0.13” Luminosity Function

December 4,2002GSMT SWG5 HST/NICMOS Gemini/Hokupa’a

December 4,2002GSMT SWG6

December 4,2002GSMT SWG8

December 4,2002GSMT SWG9 This figure shows a ten minute exposure of GG tau using this technique compared to the HST/NICMOS image from Silber et al. (2000). The Hokupa'a image comfirms the suspected gap in the disk that fell in the diffraction spikes of HST/NICMOS as well as revealing new structure in the disk. Guyon

December 4,2002GSMT SWG10 MPE Group: GC results

December 4,2002GSMT SWG11 NAOS results

December 4,2002GSMT SWG12 Classical AOMCAO No AO 165’’ MCAO Performance Summary Early NGS results, MK Profile 2 DMs / 5 NGS 320 stars / K band / 0.7’’ seeing 1 DM / 1 NGS Stars magnified for clarity

December 4,2002GSMT SWG13 Effectiveness of MCAO Numerical simulations: 5 Natural guide stars 5 Wavefront sensors 2 mirrors 8 turbulence layers MK turbulence profile Field of view ~ 1.2’ H band

December 4,2002GSMT SWG14 PSF Characteristics H Band [16,17,8] actuators Median seeing, CP 200 PDE/sub/ms for H.Order WFS Least square MCAO AO Distance off-axis [“] Strehl ratio FWHM [arcsec] Distance off-axis [“] 50% Enc.En.  [“] 0.1” Slit Coupling Distance off-axis [“] 0.7 mag IFU: > 1 mag 3x 10x Most of area is here !

December 4,2002GSMT SWG15 The Gemini MCAO in brief... Baseline system (17,19,12) actuators across beams, 3DMs, 5 WFS+LGS (125 PDE/subaperture/frame ~ 10W) Field average Strehl under median seeing conditions at zenith (no NGS noise) SS Band AO-only S Overall S *FWHM Limiting mag † J 41% 20%0.032’’ 26.3 H 60% 40%0.042’’ 25.0 K’ 75% 60%0.057’’ 24.9 *includes mostly low order aberrations from telescope and instrument, and AO calibration errors. † 5 sigma in 1 hour, extrapolated from the Hokupa’a results H band Sky Coverage : 15% (b=90 o ), 70% (b=30 o )

December 4,2002GSMT SWG16 MCAO, CAO, HST & NGST Sensitivities Limiting magnitudes, 5 , 3600sec, aperture = 2x2pixels Median seeing No AO MCAO HST NGST R~5 [magnitude (nJy)] 23.2 (370) 24.9 (76) 23.7 (230)28.0 (4.4)  m23.2 (370) 24.9 (76) 23.7 (230)28.0 (4.4) 24.8 (190) 26.3 (50) 26.0 (66)28.6 (6.0)  m24.8 (190) 26.3 (50) 26.0 (66)28.6 (6.0) R~10000 [magnitude (  Jy)] 20.4 (4.8) 20.3 (4.8) 17.2 (92)20.1 (6.1)  m20.4 (4.8) 20.3 (4.8) 17.2 (92)20.1 (6.1) 21.3 (4.7) 20.5 (9.7) 17.9 (107)20.5 (9.7)  m21.3 (4.7) 20.5 (9.7) 17.9 (107)20.5 (9.7) slit width (at K) 0.4” 0.066” 0.22” 0.066” Chun et al: confirmed spectroscopy 1 <  < 2.5  m will be detector limited  Nearly half (11/25) of the DRM’s can be started and explored by Gemini  The MCAO Science Case workshop

December 4,2002GSMT SWG17 Various AO modes and first order performance

December 4,2002GSMT SWG18 Relative Gain of groundbased 20m and 50m telescopes compared to NGST Groundbased advantage NGST advantage Imaging Velocities ~30km/s

December 4,2002GSMT SWG19 ELT-AO Fundamental Challenges Sky Coverage (independent of D) S.C.  0.1% (V), 2% (K), 20% (L-M) Solutions:  Laser Guide Stars  Multiple faint Natural GSs LGS Cone effect: S  exp[- (D/d 0 ) 5/3 ] S cone (1  m) = 0.5 (8-m), < 0.01 (50-m) Solution:  Multiple beacons 90 km Path diff. and “Missing” Data Open-loop measurements of off-axis LGS (large dynamic range, sensitivity loss) Solution:  Multi-Conjugate AO

December 4,2002GSMT SWG20 Scaling and Orders of magnitude versusD FoV  #DM  #act/DMD (1+a  ) #WFS/GS - -(1+b  ) #pix/s/WFSD Computing Pow.D 4 -6 (1+c  ) 2 100GF 30PF 800PF Laser power*-/D/D W 80W 160W 1: D=30 m, =1  m, FoV= 1’ 2: D=50 m, =0.5  m, FoV= 2’ 3: D=100 m, =0.5  m, FoV= 2’ >>> Fundamental limits: #DM (,  ), #GS > #DM <<< Fov = 2’, ~ 6 DM / FoV = 4’, 15 DMs ! (at ~ 1 micron) * no smart tricks

December 4,2002GSMT SWG21 Sample Numerical Results (CP Turbulence, 3 DM’s) Sample Numerical Results (CP Turbulence, 3 DM’s)

December 4,2002GSMT SWG22 Critical Technology to develop Deformable Mirrors : –Deformable secondaries (butable) –Dense / Compact DMs (d=1mm? 8’ waffers / 5mm Xinetics) High speed CCD arrays for WFS Fast computers/Alternative control schemes –“segmented pupil” –Layer oriented WFSs Lasers (short pulses) Cost: $50 to $100M. To be started ASAP. AO defines the ELT’s critical path !