On the Occurrence of Low-topped Supercells across the British Isles

Slides:



Advertisements
Similar presentations
European Storm Forecast Experiment A close look at a severe MCS during the Kyrill winter storm over Central Europe Christoph Gatzen, Pieter Groenemeijer,
Advertisements

Plant Sector Workshop March 21, MIT – Progress on the Science of Weather and Climate ExtremesMarch 29, 2012 Motivation –Billion-dollar Disasters.
Prentice Hall EARTH SCIENCE
Analysis of Rare Northeast Flow Events By Joshua Beilman and Stephanie Acito.
Stability and Severe Storms AOS 101 Discussion Sections 302 and 303.
Characteristics of Isolated Convective Storms
Super Tuesday Tornado Outbreak Presented by: Catherine Smith, Colleen Smith, Trevor Smith, Andrew Smith.
1. 2 Presented by John P. Monteverdi Professor of Meteorology Department of Geosciences San Francisco State University Research completed as part of appointments.
A Convective Wind Event over Southeastern Alberta on 15 July 2008 Stephen Knott and Chris Wielki Prairie and Arctic Storm Prediction Centre - Edmonton.
An Overview of Environmental Conditions and Forecast Implications of the 3 May 1999 Tornado Outbreak Richard L. Thompson and Roger Edwards Presentation.
More Thunderstorms. Today Homework in Wind shear More multicellular storms.
Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California Ted B. Schlaepfer Department of Geosciences San Francisco State.
Kansas Severe Thunderstorm Outbreak May 7, 2002 Christopher Medjber Meteorology 503 Department of Geosciences SFSU Christopher Medjber Meteorology 503.
Class #9: Monday, July 19 Thunderstorms and tornadoes Chapter 14 1Class #9, Monday, July 19, 2010.
Chapter 14. Thunderstorms  A storm containing lightening and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
The supercell storm Anthony R. Lupo Atms 4310 / 7310 Lab 12.
Severe Squall Line over Quebec August 18th 2008 Robert Michaud QSPC – Montreal October 29th 2008.
Synoptic, Thermodynamic, Shear Setting May 7, 2002 Tornadic Thunderstorm in Southwestern Kansas Michele Blazek May 15, 2005.
Weather.
AOSC 200 Lesson 18. Fig. 11-1, p. 312 Lifted Index A parcel of air will not rise unless it is unstable. The lifted index follows a parcel of air as it.
The 4 August 2004 Central Pennsylvania Severe Weather Event – Environmental and Topographical Influences on Storm Structure Evolution Joe Villani NOAA/NWS,
Characteristics of Isolated Convective Storms Meteorology 515/815 Spring 2006 Christopher Meherin.
Weather Patterns and Severe Storms Chapter 20
Determining Favorable Days for Summertime Severe Convection in the Deep South Chad Entremont NWS Jackson, MS.
Corfidi, et al – convection where air parcels originate from a moist absolutely unstable layer above the PBL. Can produce severe hail, damaging.
Use of TAMDAR Data in a Convective Weather Event Saturday, May 21, 2005.
A Preliminary Evaluation of Heavy Snow Conceptual Models for East Vancouver Island (EVI) Rodger WU and Brad Snyder Pacific Storm Prediction Centre, EC,
BY ERIC MOSS TORNADOES tornadoes usually form in a giant rotating thunderstorm called a supercell. Supercells form when cold polar air meets warm tropical.
1. HAZARDS  Wind shear  Turbulence  Icing  Lightning  Hail 3.
National Weather Service Weather Forecast Office – Taunton, MA (BOX)
A Study on the Environments Associated with Significant Tornadoes Occurring Within the Warm Sector versus Those Occurring Along Boundaries Jonathan Garner.
Meteorology 1010 Supplement to Chapters 9-11 This PowerPoint is not a substitute for reading the textbook and taking good notes in class.
Hastings, Nebraska National Weather Service Considerations for TAF Composition UNK Aviation Department October 12, 2006.
Weather Forecasting Chapter 9 Dr. Craig Clements SJSU Met 10.
Composite Analysis of Environmental Conditions Favorable for Significant Tornadoes across Eastern Kansas Joshua M. Boustead, and Barbara E. Mayes NOAA/NWS.
Soundings and Adiabatic Diagrams for Severe Weather Prediction and Analysis Continued.
Tornadoes.
Deep Convection Ordinary Cells Multicell storms Supercells.
Tropical Severe Local Storms Nicole Hartford. How do thunderstorms form?  Thunderstorms result from moist warm air that rises due to being less dense.
Chapter 10. Thunderstorms  A storm containing lightning and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
Chapter 11: severe weather!! (a)thunderstorms (classification) (b)tornadoes (c)lightning, and (d)hail.
Meteo 3: Chapter 14 Spawning severe weather Synoptically-forced storms Read Chapter 14.
GEOG 1112: Weather and Climate Violent Weather. Midlatitude Cyclone Well-organized low pressure system that migrates across a region as it spins Develops.
Air Masses and Weather 17 Air Masses  Air Masses An air mass is an immense body of air that is characterized by similar temperatures and amounts of moisture.
Bay Effect Snow from the Chesapeake Bay David F. Hamrick WPC Meteorologist College Park, Maryland.
A Rare Severe Weather and Tornado Event in Central New York and Northeast Pennsylvania: July 8, 2014 Presented by Mike Evans 1.
Tornadoes in the United States By: Katie Harris. Tornadoes are one of nature's most violent storms. In an average year, about 1,000 tornadoes are reported.
Ordinary Cells Multicell storms Supercells
Soundings and Adiabatic Diagrams for Severe Weather Prediction and Analysis Continued.
The April 9 th Tornado Outbreak Across the Four-State Region By Nick Fillo & Ismari Ramos WFO Shreveport, LA 4 th Regional Severe Storms/Radar and Hydrology.
Thunderstorms (Tormenta) and Tornadoes After completing this section, students will discuss the formation of violent weather patterns such as thunderstorms.
Class #26: Friday October 30 Thunderstorms 1Class #26: Friday, October 30, 2009.
Chapter 8 Thunder, Lightening and Hail Lee Sang-Min 8 November, 2007.
TOPOGRAPHICALLY INDUCED CONVECTIVE CLOUD PATTERNS
WSR - 88D Characteristics of Significant Tornadoes in New York and New England Lance Franck University of Massachusetts Hayden Frank NOAA/NWS/Weather.
Who Cares About the Weather?
Characteristics of Isolated Convective Storms
AOS 100: Weather and Climate
Alan F. Srock and Lance F. Bosart
Using satellite imagery to detect severe thunderstorms
Severe Weather: Thunderstorms, Tornadoes, and Hurricanes
Ted B. Schlaepfer Department of Geosciences
CAE Tornado Cases Hunter Coleman Anthony Petrolito Michael Cammarata
Thermodynamic Diagrams and Severe Weather
Hiding under a freeway overpass will protect me from a tornado.
Bellwork 5/11 Happy Friday!! 
Air Masses and Severe Storms
Thunderstorms Features Cumulonimbus clouds Heavy rainfall Lightning
Weather and Climate Notes Part 1
Presentation transcript:

On the Occurrence of Low-topped Supercells across the British Isles www.torro.org.uk www.paweathercentre.com Paul Knightley –Director of TORRO Severe Storms Forecast Division Assistant Forecast Manager, PA WeatherCentre Ltd, 292 Vauxhall Bridge Road, London, England. SW1V 1AE paul.knightley@torro.org.uk Introduction It has long been recognised that tornadoes are fairly common across the British Isles, with an average of around 40/year, and extreme years, over 150. The islands are also affected by other types of severe convective weather each year, such as damaging straight-line winds and hailstorms. The modes of convection which spawn these events have not been studied in great detail until recent years. The author is proposing that some of these events are attributable to low topped supercell-type storms. A supercell is defined as a storm which possesses a deep, persistent rotating updraught called a mesocyclone. A “low-topped” (LT) supercell is one where the equilibrium level is much lower compared with the “large” supercells which affect portions of the central US each spring. Such storms have been documented in the Pacific Northwest, as well as in the Great Plains Discussion Both storms studied show evidence of supercell behaviour. Whilst thermodynamics may seem unsupportive of supercells (especially in storm 1), the strong shear through the convective layer may support low-topped supercells. During autumn/winter, the UK is frequently subjected to high vertical wind shear acting on unstable airmasses Tornadoes and large hail occur each autumn/winter, often associated with strong deep-layer and low-level shear - the most spectacular example being 105 tornadoes in one day across England and Wales, on Nov 21st 1981 Parcel buoyancy is low in these seasons, yet strong wind shear through the buoyancy may promote updraught rotation and possibly supercells Both storms occurred on days where TORRO forecasters had recognised that a severe weather threat existed Severe thunderstorms and tornadoes have traditionally not been part of standard severe weather warnings, leaving residents oblivious to the threat of severe convective weather TORRO have pioneered severe thunderstorm and tornado forecasting in the UK via the issuance of experimental “advisories” and “watches”, since 1992. In 2004, 26 tornadoes occurred within a TORRO forecast. Tracks of Storm 1 (light blue line) and another cell (black line) on 21st March 2004. Notice the deviant motion to the right of the mean flow. The other cell (black line) moved with the mean flow. Image © PA WeatherCentre Strongly-enhanced image of the Filkins storm, looking east. Original photo © Brendan Jones Herstmonceux tephigram for 12Z on March 21st 2004. Note the strong speed shear near the surface. SBCAPE is around 300 J/Kg. Image © PA WeatherCentre Aim To show that conditions favouring LT supercells can occur across the British Isles. To highlight two recent examples of storms which exhibited supercell-type behaviour To highlight the fact that such storms pose a threat to life and property in the British Isles each year To show that such storms can and should be forecasted. Storm 2 Surface observations across the Midlands around the time of the Peterborough tornado. Image © PA WeatherCentre Surface observations across the Midlands around the time of the Peterborough tornado. Image © PA WeatherCentre Tracks of the left- and right-moving supercell storms, from storm initiation, on July 28th 2005. Purple track is the left split, and the black track is the right split. Image © PA WeatherCentre. Method Two severe thunderstorms which both produced tornadoes were studied using Upper-air and surface data Radar imagery Photographs of the storms The first storm (Storm 1) occurred on the 21st March 2004. It produced: Hailstones up to 20mm in size, and, A tornado which caused damage in the Filkins area of Oxfordshire (South Midlands), rated as T3. The second storm (Storm 2) occurred on the 28th July 2005. It produced: A tornado rated as T3 around Peterborough (eastern England). Another tornado at Moulton, Lincolnshire (eastern England). Estimate progression of the triple point between a “synoptic” cold front, and a “insolation-enhanced” warm front across the UK on 28th July 2005 Image © PA WeatherCentre Estimate progression of the triple point between a “synoptic” cold front, and a “insolation-enhanced” warm front across the UK on 28th July 2005 Image © PA WeatherCentre Radar image at 1630 on Thursday 28th May 2005, showing left and right supercell members over Lincolnshire. Image © PA WeatherCentre Nottingham 12Z tephigram on 28th July 2005. The ascent has been modified with observed air and dew-point temperatures at 2m which were measured in the vicinity of the storm. Note the strong veering in the lowest 1km. SBCAPE around 1500 J/Kg. Image © PA WeatherCentre Conclusions LT supercells can pose a significant threat to life and property in the UK Lack of national Doppler radar prevents a climatology of such storms Despite limited resources and a non 24/7 operation, TORRO has achieved respectable results in the forecasting of severe convective storms A fully resourced weather company working alongside TORRO should be able to achieve even better results Thought should be given as to how to integrate tornado watches into standard severe weather warnings T3 damage caused by tornado at Peterborough. © Stuart Robinson Estimate progression of the triple point between a “synoptic” cold front, and a “insolation-enhanced” warm front across the UK on 28th July 2005 Image © PA WeatherCentre Acknowledgements PA WeatherCentre, Michael Dukes, Terence Meaden, Brendan Jones, Laura Gilchrist, Doug Fidler, Stuart Robinson, the staff and members of TORRO Tree damage near Filkins, Oxon, March 2004 (from Storm 1) © Brendan Jones Tornado and rear-flank downdraught (RFD) notch near Peterborough, 28th July 2005 (Storm 2) © Doug Fidler