LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.

Slides:



Advertisements
Similar presentations
Johannes ORPHAL, Pascale CHELIN, Nofal IBRAHIM, and Pierre-Marie FLAUD
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Dual Wavelength Isotope Ratio FS-CRDS Thinh Q. Bui California Institute of Technology ISMS 2014.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
CAVIAR water vapour laboratory FTS measurements Dr Robert McPheat CAVIAR Meeting Cosners’ House, 15/12/2009.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Infrared-Laser Induced Fluorescence and Instrumental Design Michael W. Morton Geoffrey A. Blake Division of Geology and Planetary Science California Institute.
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows University of Bremen, Institute for Environmental Physics OSU, Columbus OH, USA1.
11 Collisional effects on spectral shapes and remote sensing H. Tran LISA, CNRS UMR 7583, Université Paris-Est Créteil and Université Paris Diderot
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
High-resolution spectroscopy of nitrous acid (HONO) and its deuterated species (DONO) in the far- and mid-IR spectral regions A. Dehayem-Kamadjeu, J. Orphal,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Yu. I. BARANOV, W. J. LAFFERTY, and G. T. Fraser Optical Technology Division Optical Technology Division National Institute of Standards and Technology,
Misure ottiche su atmosfere planetarie in laboratorio
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
Tony Clough, Mark Shephard and Jennifer Delamere Atmospheric & Environmental Research, Inc. Colleagues University of Wisconsin International Radiation.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Beamline AILES : Mid IR to THz Spectroscopy The AILES Infrared and THz High Resolution Spectroscopy beamline at SOLEIL (Saclay, 30 km south of Paris) –
CO 2 Lineshapes Near 2060nm Thinh Q. Bui California Institute of Technology ISMS 2014.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
Yu. I. BARANOV, and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
I. GALLI, S. BARTANLINI, S. BORRI, P. CANCIO, D. MAZZOTTI, P.DE NATALE, G. GIUSFREDI Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide.
Infrared laser spectroscopic ETH Zürich, Switzerland
Concentration Dependence of Line Shapes in the Band of Acetylene Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, Sylvestre.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
WP4: Observations from ground networks. Work package 4 OBSERVATIONS FROM GROUND NETWORKS.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
National Institute of Standards and Technology
Jacob T. Stewart Department of Chemistry, Connecticut College
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
MIPAS database: New HNO3 line parameters at 7
An accurate and complete empirical line list for water vapor
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
Presentation transcript:

LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) Université de Paris-XII, Créteil Cedex, France YURI I. BARANOV Optical Technology Division, NIST, Gaithersburg, MD , USA

CNRS-LISAMSS 2006, Columbus, June 19-23, H 2 O: The most important atmospheric trace gas It has a crucial role in the Earth's radiation budget (responsible for ~70% of absorption of incoming sunlight ) Principal contributor to the greenhouse effect Motivation Motivation Absorption of solar radiation in the near-IR region Infrared remote sensing of atmosphere using aircraft and satellite sensors Necessity to provide: precise spectral line parameters in the near-IR region

CNRS-LISAMSS 2006, Columbus, June 19-23, Motivation Motivation Solar Spectrum with Atmospheric Absorptions

CNRS-LISAMSS 2006, Columbus, June 19-23, R. A. Toth, J. Mol. Spectrosc., 166, (1994). J.-M. Flaud et al., J. Mol. Spectrosc., 185, (1997). P. L. Ponsardin et al., J. Mol. Spectrosc., 185, (1997). A. Lucchesini et al., Eur. Phys. J. D., 8, (2000). R. Schermaul et al, J. Mol. Spectrosc. 208, (2001). A. Ray et al., Appl. Phys. B, 79, (2004). Previous measurement in the near IR region Example of measurement: line intensities ( S  /cm molecule -1 ) position (cm -1 )HITRAN04PonsardinSchermaulRay ! Differences between different authors exceed stated accuracy (up to 30%)  need for more measurements

CNRS-LISAMSS 2006, Columbus, June 19-23, Chopper Wavemeter ECDLDFG ECDL (External External Cavity Diode Laser) and DFG (Difference Frequency Generation Laser) coupled with multi-path absorption cell: Experimental set-up Mid IR ECDL: 30 mW nm Linewidth 1MHz DFG 3-5 µm Linewidth 1MHz Lock-in detection LabVIEW acquisition S/N>1000 Measurement time: few minutes

CNRS-LISAMSS 2006, Columbus, June 19-23, Experimental set-up ECDL: 30 mW nm Linewidth 1MHz DFG 3-5 µm Linewidth 1MHz Lock-in detection LabVIEW acquisition S/N>1000 Measurement time: few minutes

CNRS-LISAMSS 2006, Columbus, June 19-23, Experimental set-up L = 1 m, maximum path length 100 m, CaF 2 windows 3 MKS Baratrons Water sample Thermometer

CNRS-LISAMSS 2006, Columbus, June 19-23, Experimental Precautions HDO lines (probed in the mid-IR by the DFG laser) to validate H 2 O pressure values (assumption: natural HDO abundance). Background emission of the ECDL  narrow spectral filter. Validation of detector linearity using neutral density filters. Linearization of the wavenumber axis: FP etalon (1MHz) H 2 O samples: Distilled, ultrasonic …

CNRS-LISAMSS 2006, Columbus, June 19-23,   ResultsResults Example1: Self broadening of the line at cm -1 Very high S/N ratio( >1000) Experimental lines very well modeled using Voigt profile Observation of « Dicke narrowing »

CNRS-LISAMSS 2006, Columbus, June 19-23,   10 ResultsResults Example2: Air-broadening of the line at cm -1

CNRS-LISAMSS 2006, Columbus, June 19-23, ResultsResults Example3: 3 lines near cm-1

CNRS-LISAMSS 2006, Columbus, June 19-23, Results : Line Intensities Up to 10 % between fixed and free  D Voigt profile MEAN value (!) 15 % above HITRAN2004 Good agreement (5%) with Ponsardin and Browell, JMS 1997 Difference can not be explained by line profile Fixed Free

CNRS-LISAMSS 2006, Columbus, June 19-23, Results : Self-broadening coefficient 40 lines measured RMS < 1% 10 % lower than HITRAN2004

CNRS-LISAMSS 2006, Columbus, June 19-23, Results : Air-broadening coefficient 40 lines measured RMS < 1% Very good agreement with HITRAN2004 (less than 5%)

CNRS-LISAMSS 2006, Columbus, June 19-23, Conclusion and prospective 40 different H 2 O lines measured between 815 and 835 nm. Intensities in the 830 nm band 15% higher than HITRAN2004. Self-broadening coefficients 10% lower than HITRAN2004. Air-broadening coefficients in good agreement (< 5%) with HITRAN2004. Dicke-narrowing  although weak, check impact on intensities using other profiles (Galatry, Rautian,…) New, independent experiments (FTS?) Update of HITRAN2004 ?