1 Remote Sensing Fundamentals Part II: Radiation and Weighting Functions Tim Schmit, NOAA/NESDIS ASPB Material from: Paul Menzel UW/CIMSS/AOS and Paolo.

Slides:



Advertisements
Similar presentations
Electro-magnetic radiation
Advertisements

MODIS/AIRS Workshop MODIS Level 2 Cloud Product 6 April 2006 Kathleen Strabala Cooperative Institute for Meteorological Satellite Studies University of.
MET 112 Global Climate Change
Radiation Heat Transfer
The Greenhouse Effect and Earth-Atmosphere Energy Balance
Radiation and the Planck Function Lectures in Benevento June 2007 Paul Menzel UW/CIMSS/AOS.
Electromagnetic Radiation Electromagnetic Spectrum Radiation Laws Atmospheric Absorption Radiation Terminology.
1. 2 Definition 1 – Remote sensing is the acquiring of information about an object or scene without touching it through using electromagnetic energy a.
Cooperative Institute for Research in the Atmosphere Introduction to Remote Sensing Stan Kidder COMET Faculty Course Boulder, CO August 9, 2011
Lecture 5: Thermal Emission Chapter 6, Petty We thank Prof. Cheng-ta Cheng for sharing his online notes on this subject.
MET 60: Chapter: 4 (W&H) and 2 (Stull) Radiative Transfer Dr. Craig Clements San José State University.
Satellites Observations Temperature and albedo. What we need to do How do we get values of temperature and albedo (reflectance) using the instruments.
Atmospheric Emission.
Energy interactions in the atmosphere
METR180: Remote Sensing Lecture 14 – On Water Vapor.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 7 “Warming the Earth and Atmosphere” Dr. Eugene Cordero San Jose.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 8 “Radiative Transfer” Dr. Eugene Cordero San Jose State University.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison South Africa, April 2006.
Reminder of radiance quantities I λ RadianceW m -2 μm -1 sr -1 Intensity (Monochromatic) F λ Spectral IrradianceW m -2 μm -1 Monochromatic Flux F(Broadband)
Pat Arnott, ATMS 749 Atmospheric Radiation Transfer Chapter 6: Blackbody Radiation: Thermal Emission "Blackbody radiation" or "cavity radiation" refers.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison Benevento, June 2007.
Laws of Radiation Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Macro Description of highly complex Wave.
Radiation: WHY CARE ??? the ultimate energy source, driver for the general circulation usefully applied in remote sensing (more and more)
Predicting Engine Exhaust Plume Spectral Radiance & Transmittance
1 Review of Remote Sensing Fundamentals Allen Huang Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University.
Remote Sensing Energy Interactions with Earth Systems.
Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA.
Radiative Transfer in the Atmosphere Lectures in Benevento June 2007 Paul Menzel UW/CIMSS/AOS.
Physics of the Atmosphere II
Radiation and the Radiative Transfer Equation Lectures in Ostuni June 2006 Paul Menzel NOAA/NESDIS/ORA.
Radiation Fundamental Concepts EGR 4345 Heat Transfer.
Radiation Heat Transfer EGR 4345 Heat Transfer. Blackbody Radiation Blackbody – a perfect emitter & absorber of radiation Emits radiation uniformly in.
Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature.
Radiation and the Radiative Transfer Equation Lectures in Maratea 22 – 31 May 2003 Paul Menzel NOAA/NESDIS/ORA.
Earth’s Energy Balance
Pat Arnott, ATMS 749, UNR, 2008 CH 8: ATMOSPHERIC EMISSION: PRACTICAL CONSEQUENCES OF THE SCHWARZSCHILD EQUATION FOR RADIATION TRANSFER WHEN SCATTERING.
1 Remote Sensing Fundamentals Part I: Radiation and the Planck Function Tim Schmit, NOAA/NESDIS ASPB Material from: Paul Menzel UW/CIMSS/AOS and Paolo.
Please read Chapter 4 in Archer Textbook
Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA.
Lectures in Monteponi 21 – 27 September 2008 Paul Menzel Paolo Antonelli UW/CIMSS Jochem Kerkmann Hans Peter Roesli EUMETSAT Alberto Marini University.
Electromagnetic Radiation: Interactions in the Atmosphere.
Radiation (Ch 12 YAC) Thermal energy is emitted by matter as a result of vibrational and rotational motion of molecules, atoms and electrons. The energy.
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 3 The Earth’s Energy Balance Dr. Eugene Cordero San Jose State University Outline.
Blackbody Radiation/ Planetary Energy Balance
Within dr, L changes (dL) from… sources due to scattering & emission losses due to scattering & absorption Spectral Radiance, L(, ,  ) - W m -2 sr -1.
1 Teaching Innovation - Entrepreneurial - Global The Centre for Technology enabled Teaching & Learning D M I E T R, Wardha DTEL DTEL (Department for Technology.
Reminder of radiance quantities I λ RadianceW m -2 μm -1 sr -1 Intensity (Monochromatic) F λ Spectral IrradianceW m -2 μm -1 Monochromatic Flux F(Broadband)
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison Benevento, June 2007.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison South Africa, April 2006.
Summary Remote Sensing Seminar Summary Remote Sensing Seminar Lectures in Maratea Paul Menzel NOAA/NESDIS/ORA May 2003.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli SSEC University of Wisconsin-Madison Monteponi, September 2008.
Energy, heat, and absorption Scripps Classroom Connection
Planck’s law  Very early in the twentieth century, Max Karl Ernest Ludwig Planck put forth the idea of the quantum theory of radiation.  It basically.
Introduction to Radiative Transfer The Bologna Lectures Paul Menzel NOAA/NESDIS/ORA.
Physical Principles of Remote Sensing: Electromagnetic Radiation
Remote Sensing Fundamentals Part I: Radiation and the Planck Function
Radiative Transfer in the Atmosphere
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
Remote Sensing Seminar
Remote Sensing Seminar
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
Introduction and Basic Concepts
Introduction and Basic Concepts
REMOTE SENSING.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
ELECTROMAGNETIC RADIATION
RADIATION LAWS.
Presentation transcript:

1 Remote Sensing Fundamentals Part II: Radiation and Weighting Functions Tim Schmit, NOAA/NESDIS ASPB Material from: Paul Menzel UW/CIMSS/AOS and Paolo Antonelli CIMSS Cachoeira Paulista - São Paulo November, 2007

2 Using wavelengths c 2 / λ T Planck’s Law B( λ,T) = c 1 / λ 5 / [e -1] (mW/m 2 /ster/cm) where λ = wavelengths in cm T = temperature of emitting surface (deg K) c 1 = x 10-5 (mW/m 2 /ster/cm -4 ) c 2 = (cm deg K) Wien's Law dB( λ max,T) / d λ = 0 where λ (max) =.2897/T indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note B( λ max,T) ~ T 5.  Stefan-Boltzmann Law E =   B( λ,T) d λ =  T 4, where  = 5.67 x 10-8 W/m2/deg4. o states that irradiance of a black body (area under Planck curve) is proportional to T 4. Brightness Temperature c 1 T = c 2 / [ λ ln( _____ + 1)] is determined by inverting Planck function λ 5 B λ

3 Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

B (λ, T) / B (λ, 273K) Temperature (K) 4μm4μm 6.7μm 10μm 15μm microwave Temperature Sensitivity of B(λ,T) for typical earth scene temperatures

5 Spectral Characteristics of Energy Sources and Sensing Systems

6

7

8 Normalized black body spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength so that the area under the curves is proportional to irradiance. Black body Spectra

9

10

11

12

13

14

15 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation Basic Units Definitions of Radiation Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission Conservation of Energy Planetary Albedo Selective Absorption and Emission Summary of Interactions between Radiation and Matter Beer's Law and Schwarzchild's Equation Atmospheric Scattering The Solar Spectrum Composition of the Earth's Atmosphere Atmospheric Absorption and Emission of Solar Radiation Atmospheric Absorption and Emission of Thermal Radiation Atmospheric Absorption Bands in the IR Spectrum Atmospheric Absorption Bands in the Microwave Spectrum Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE Microwave Form of RTE5-28 

16 Emission, Absorption Blackbody radiation B represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength. Emissivity  is defined as the fraction of emitted radiation R to Blackbody radiation,  = R /B. In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so a = . Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters.

17 Transmittance Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k ) at that wavelength. Beer’s law indicates that transmittance decays exponentially with increasing path length - k u (z)  (z   ) = e  where the path length is given by u (z) =   dz. z k u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth . Realizing that the hydrostatic equation implies g  dz = - q dp where q is the mixing ratio and  is the density of the atmosphere, then p - k u (p) u (p) =  q g -1 dp and  (p  o ) = e. o

18  + a + r = 1 Energy conservation =  B (T s ) T

19 Emission, Absorption, Reflection, and Scattering If a, r, and  represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says a + r +  = 1. For a blackbody a = 1, it follows that r = 0 and  = 0 for blackbody radiation. Also, for a perfect window  = 1, a = 0 and r = 0. For any opaque surface  = 0, so radiation is either absorbed or reflected a + r = 1. At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).

20 Radiative Transfer Equation The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I, for a cloudless atmosphere is given by the expression I =  sfc B ( T sfc )  (sfc - top) +   layer B ( T layer )  (layer - top) layers where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

21 Spectral Characteristics of Atmospheric Transmission and Sensing Systems

22 Relative Effects of Radiative Processes

23

There are 3 modes : - « nucleation »: radius is between and 0.05  m. They result from combustion processes, photo-chemical reactions, etc. - « accumulation »: radius is between 0.05  m and 0.5  m. Coagulation processes. - « coarse »: larger than 1  m. From mechanical processes like aeolian erosion. « fine » particles (nucleation and accumulation) result from anthropogenic activities, coarse particles come from natural processes. Aerosol Size Distribution

25 Scattering of early morning sun light from smoke

26 Measurements in the Solar Reflected Spectrum across the region covered by AVIRIS

27 AVIRIS Movie #1 AVIRIS Image - Linden CA 20-Aug Spectral Bands:  m Pixel: 20m x 20m Scene: 10km x 10km Movie from MIT/LL

28 AVIRIS Movie #2 AVIRIS Image - Porto Nacional, Brazil 20-Aug Spectral Bands:  m Pixel: 20m x 20m Scene: 10km x 10km Movie from MIT/LL

29 UV, Visible and Near-IR Far-Infrared (IR) UV, Visible and Near-IR and IR and Far-IR Infrared (IR)

30 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation Basic Units Definitions of Radiation Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission Conservation of Energy Planetary Albedo Selective Absorption and Emission Summary of Interactions between Radiation and Matter Beer's Law and Schwarzchild's Equation Atmospheric Scattering The Solar Spectrum Composition of the Earth's Atmosphere Atmospheric Absorption and Emission of Solar Radiation Atmospheric Absorption and Emission of Thermal Radiation Atmospheric Absorption Bands in the IR Spectrum Atmospheric Absorption Bands in the Microwave Spectrum Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE Microwave Form of RTE5-28 

31 Radiative Transfer Equation The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I, for a cloudless atmosphere is given by the expression I =  sfc B ( T sfc )  (sfc - top) +   layer B ( T layer )  (layer - top) layers where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

32 Re-emission of Infrared Radiation

33 Radiative Transfer through the Atmosphere

34 Radiative Transfer Equation

35 RsfcR1R2 top of the atmosphere τ2 = transmittance of upper layer of atm τ1= transmittance of lower layer of atm bb earth surface. Robs = Rsfc τ1 τ2 + R1 (1-τ1) τ2 + R2 (1- τ2)

36 In standard notation, I =  sfc B (T(p s ))  (p s ) +   (  p) B (T(p))  (p) p The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer). Consequently,  (  p)  (p) = [1 -  (  p)]  (p) Since transmittance is an exponential function of depth of absorbing constituent, p+  p p  (  p)  (p) = exp [ -  k q g -1 dp] * exp [ -  k q g -1 dp] =  (p +  p) p o Therefore  (  p)  (p) =  (p) -  (p +  p) = -  (p). So we can write I =  sfc B (T(p s ))  (p s ) -  B (T(p))  (p). p which when written in integral form reads p s I =  sfc B (T(p s ))  (p s ) -  B (T(p)) [ d  (p) / dp ] dp. o

37 When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written o I =  sfc B (T s )  (p s ) +  B (T(p)) F (p) [d  (p)/ dp ] dp p s where F (p) = { 1 + (1 -  ) [  (p s ) /  (p)] 2 } The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface. The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is [ d  (p) / dp ]. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

38 Transmittance for Window Channels z  1  close to 1 a close to 0 z1z1 z2z2 zNzN  + a + r = 1 The molecular species in the atmosphere are not very active: most of the photons emitted by the surface make it to the Satellite if a is close to 0 in the atmosphere then  is close to 0, not much contribution from the atmospheric layers

39 Trasmittance for Absorption Channels z  1 z1z1 z2z2 zNzN Absorption Channel:  close to 0 a close to 1 One or more molecular species in the atmosphere is/are very active: most of the photons emitted by the surface will not make it to the Satellite (they will be absorbed) if a is close to 1 in the atmosphere then  is close to 1, most of the observed energy comes from one or more of the uppermost atmospheric layers

40 Earth emitted spectra overlaid on Planck function envelopes CO2 H20 O3 CO2

41 AIRS – Longwave Movie

42 Longwave CO CO2, strat temp CO2, strat temp CO2, upper trop temp CO2, mid trop temp CO2, lower trop temp H2O, lower trop moisture H2O, dirty window Midwave H2O & O window O3, strat ozone H2O, lower mid trop moisture H2O, mid trop moisture H2O, upper trop moisture GOES Sounder Weighting Functions

43 Weighting Functions  1 z1z1 z2z2 zNzN d  /dz z1z1 z2z2 zNzN

44 High Mid Low  ABC  ABCABC line broadening with pressure helps to explain weighting functions  ABC

45 CO2 channels see to different levels in the atmosphere 14.2 um 13.9 um 13.6 um 13.3 um

46 Low Gain Channels Band 14 low 0.68 µm Vegetated areas Are visible Saturation over Barren Soil Visible details over water

47 High Gain Channels Band 14 hi 0.68 µm Saturation over Vegetated areas little barely visible Visible details over water Saturation over Barren Soil

48 H2OH2O H2OH2O O3O3 CO 2 MODIS absorption bands

49 Range for Band 14 high 0.68 µm Range for Band 14 low 0.68 µm

50 Conclusion Radiative Transfer Equation (IR): models the propagation of terrestrial emitted energy through the atmosphere

51 What time of day is this image from?