Presentation is loading. Please wait.

Presentation is loading. Please wait.

Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA.

Similar presentations


Presentation on theme: "Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA."— Presentation transcript:

1 Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA

2 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28

3 All satellite remote sensing systems involve the measurement of electromagnetic radiation. Electromagnetic radiation has the properties of both waves and discrete particles, although the two are never manifest simultaneously. Electromagnetic radiation is usually quantified according to its wave-like properties; for many applications it considered to be a continuous train of sinusoidal shapes.

4 Remote sensing uses radiant energy that is reflected and emitted from Earth at various “wavelengths” of the electromagnetic spectrum Our eyes are sensitive to the visible portion of the EM spectrum The Electromagnetic Spectrum

5 Radiation is characterized by wavelength and amplitude a

6 Terminology of radiant energy Energy from the Earth Atmosphere over time is Flux which strikes the detector area Irradiance at a given wavelength interval Monochromatic Irradiance over a solid angle on the Earth Radiance observed by satellite radiometer is described by can be inverted to The Planck function Brightness temperature

7 Definitions of Radiation __________________________________________________________________ QUANTITYSYMBOLUNITS __________________________________________________________________ EnergydQJoules FluxdQ/dtJoules/sec = Watts IrradiancedQ/dt/dAWatts/meter 2 MonochromaticdQ/dt/dA/d W/m 2 /micron Irradiance or dQ/dt/dA/d W/m 2 /cm -1 RadiancedQ/dt/dA/d /d  W/m 2 /micron/ster or dQ/dt/dA/d /d  W/m 2 /cm -1 /ster __________________________________________________________________

8 Radiation from the Sun The rate of energy transfer by electromagnetic radiation is called the radiant flux, which has units of energy per unit time. It is denoted by F = dQ / dt and is measured in joules per second or watts. For example, the radiant flux from the sun is about 3.90 x 10**26 W. The radiant flux per unit area is called the irradiance (or radiant flux density in some texts). It is denoted by E = dQ / dt / dA and is measured in watts per square metre. The irradiance of electromagnetic radiation passing through the outermost limits of the visible disk of the sun (which has an approximate radius of 7 x 10**8 m) is given by 3.90 x 10 26 E (sun sfc) = = 6.34 x 10 7 W m -2. 4  (7 x 10 8 ) 2

9 The solar irradiance arriving at the earth can be calculated by realizing that the flux is a constant, therefore E (earth sfc) x 4πR es 2 = E (sun sfc) x 4πR s 2, where R es is the mean earth to sun distance (roughly 1.5 x 10 11 m) and R s is the solar radius. This yields E (earth sfc) = 6.34 x 10 7 (7 x 10 8 / 1.5 x 10 11 ) 2 = 1380 W m -2. The irradiance per unit wavelength interval at wavelength λ is called the monochromatic irradiance, E λ = dQ / dt / dA / dλ, and has the units of watts per square metre per micrometer. With this definition, the irradiance is readily seen to be  E =  E λ dλ. o

10 In general, the irradiance upon an element of surface area may consist of contributions which come from an infinity of different directions. It is sometimes necessary to identify the part of the irradiance that is coming from directions within some specified infinitesimal arc of solid angle dΩ. The irradiance per unit solid angle is called the radiance, I = dQ / dt / dA / dλ / dΩ, and is expressed in watts per square metre per micrometer per steradian. This quantity is often also referred to as intensity and denoted by the letter B (when referring to the Planck function). If the zenith angle, θ, is the angle between the direction of the radiation and the normal to the surface, then the component of the radiance normal to the surface is then given by I cos θ. The irradiance represents the combined effects of the normal component of the radiation coming from the whole hemisphere; that is, E =  I cos θ dΩ where in spherical coordinates dΩ = sin θ dθ dφ. Ω Radiation whose radiance is independent of direction is called isotropic radiation. In this case, the integration over dΩ can be readily shown to be equal to π so that E =  I.

11 spherical coordinates and solid angle considerations

12 Radiation is governed by Planck’s Law c 2 / T B(,T) = c 1 /{ 5 [e -1] } Summing the Planck function at one temperature over all wavelengths yields the energy of the radiating source E =  B(, T) =  T 4 Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

13 Some Useful Relationships Planck’s Law c 2 / T B(,T) = c 1 /{ 5 [e -1] } (mW/m 2 /ster/  m) where = wavelength in microns (  m) T = temperature of emitting surface (deg K) c 1 = 1.191044 x 10-5 (mW/m 2 /ster/cm -4 ) c 2 = 1.438769 (cm deg K) Wien's Law dB( max,T) / dT = 0 where (max) = 0.2897 / T indicates peak of Planck function curve shifts to shorter wavelengths with temperature increase. Note B( max,T) ~ T**5.  Stefan-Boltzmann Law E =   B(,T) d =  T 4, where  = 5.67 x 10-8 W/m2/deg4. o states that irradiance of a black body (area under Planck curve) is proportional to T 4. Brightness Temperature c 1 T = c 2 /[ ln( ______ + 1)] 5 B

14 Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

15

16 Temperature sensitivity, or the percentage change in radiance corresponding to a percentage change in temperature, , is defined as dB/B =  dT/T. The temperature sensivity indicates the power to which the Planck radiance depends on temperature, since B proportional to T  satisfies the equation. For infrared wavelengths,  = c 2 / T. __________________________________________________________________ Wavelength Typical Scene Temperature Temperature Sensitivity 14.3220 4.58 11.1300 4.32 8.3300 5.76 6.3240 9.59 4.322015.04 4.030011.99

17 Cloud edges and broken clouds appear different in 11 and 4 um images. T(11)**4=(1-N)*Tclr**4+N*Tcld**4~(1-N)*300**4+N*200**4 T(4)**12=(1-N)*Tclr**12+N*Tcld**12~(1-N)*300**12+N*200**12 Cold part of pixel has more influence for B(11) than B(4)

18

19 1.0 0.8 0.6 0.4 0.2 0.0 N T 300 280 260 240 220 BT4 BT11 BT SW and LW for different cloud amounts when Tcld=220 and Tsfc=300

20 Spectral Characteristics of Energy Sources and Sensing Systems

21 Normalized black body spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength so that the area under the curves is proportional to irradiance.

22 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28 

23 Emission, Absorption, Reflection, and Scattering Blackbody radiation B represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength. Emissivity  is defined as the fraction of emitted radiation R to Blackbody radiation,  = R /B. In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so a = . Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters. If a, r, and  represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says a + r +  = 1. For a blackbody a = 1, it follows that r = 0 and  = 0 for blackbody radiation. Also, for a perfect window  = 1, a = 0 and r = 0. For any opaque surface  = 0, so radiation is either absorbed or reflected a + r = 1. At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).

24

25 Planetary Albedo Planetary albedo is defined as the fraction of the total incident solar irradiance, S, that is reflected back into space. Radiation balance then requires that the absorbed solar irradiance is given by E = (1 - A) S/4. The factor of one-fourth arises because the cross sectional area of the earth disc to solar radiation,  r 2, is one-fourth the earth radiating surface, 4  r 2. Thus recalling that S = 1380 Wm -2, if the earth albedo is 30 percent, then E = 241 Wm -2.

26 Selective Absorption and Transmission Assume that the earth behaves like a blackbody and that the atmosphere has an absorptivity a S for incoming solar radiation and a L for outgoing longwave radiation. Let Y a be the irradiance emitted by the atmosphere (both upward and downward); Y s the irradiance emitted from the earth's surface; and E the solar irradiance absorbed by the earth-atmosphere system. Then, radiative equilibrium requires E - (1-a L ) Y s - Y a = 0, at the top of the atmosphere, (1-a S ) E - Y s + Y a = 0, at the surface. Solving yields (2-a S ) Y s = E, and (2-a L ) (2-a L ) - (1-a L )(2-a S ) Y a = E. (2-a L ) Since a L > a S, the irradiance and hence the radiative equilibrium temperature at the earth surface is increased by the presence of the atmosphere. With a L =.8 and a S =.1 and E = 241 Wm -2, Stefans Law yields a blackbody temperature at the surface of 286 K, in contrast to the 255 K it would be if the atmospheric absorptance was independent of wavelength (a S = a L ). The atmospheric gray body temperature in this example turns out to be 245 K.

27  E  (1-a l ) Y s  Y a top of the atmosphere  (1-a s ) E  Y s  Y a earth surface. Incoming Outgoing IR solar (2-a S ) Y s = E =  T s 4 (2-a L )

28 Transmittance Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k ) at that wavelength. Beer’s law indicates that transmittance decays exponentially with increasing path length - k u (z)  (z   ) = e  where the path length is given by u (z) =   dz. z k u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth . Realizing that the hydrostatic equation implies g  dz = - q dp where q is the mixing ratio and  is the density of the atmosphere, then p - k u (p) u (p) =  q g -1 dp and  (p  o ) = e. o

29 Spectral Characteristics of Atmospheric Transmission and Sensing Systems

30 Relative Effects of Radiative Processes

31

32 Scattering of early morning sun light from haze

33 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28 

34 Radiative Transfer Equation The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I, for a cloudless atmosphere is given by the expression I =  sfc B ( T sfc )  (sfc - top) +   layer B ( T layer )  (layer - top) layers where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

35 Radiative Transfer through the Atmosphere

36 Re-emission of Infrared Radiation

37 Longwave CO2 14.71680CO2, strat temp 14.42696CO2, strat temp 14.13711CO2, upper trop temp 13.94733CO2, mid trop temp 13.45748CO2, lower trop temp 12.76790H2O, lower trop moisture 12.07832H2O, dirty window Midwave H2O & O3 11.08907window 9.791030O3, strat ozone 7.4101345H2O, lower mid trop moisture 7.0111425H2O, mid trop moisture 6.5121535H2O, upper trop moisture Weighting Functions

38 High Mid Low  ABC  ABCABC line broadening with pressure helps to explain weighting functions  ABC

39 CO2 channels see to different levels in the atmosphere 14.2 um 13.9 um 13.6 um 13.3 um

40 When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written o I =  sfc B (T s )  (p s ) +  B (T(p)) F (p) [d  (p)/ dp ] dp p s where F (p) = { 1 + (1 -  ) [  (p s ) /  (p)] 2 } The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface. The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is [ d  (p) / dp ]. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

41 Earth emitted spectra overlaid on Planck function envelopes CO2 H20 O3 CO2

42 Profile Retrieval from Sounder Radiances p s I =  sfc B (T(p s ))  (p s ) -  B (T(p)) F (p) [ d  (p) / dp ] dp. o I1, I2, I3,...., In are measured with the sounder P(sfc) and T(sfc) come from ground based conventional observations  (p) are calculated with physics models (using for CO2 and O3)  sfc is estimated from a priori information (or regression guess) First guess solution is inferred from (1) in situ radiosonde reports, (2) model prediction, or (3) blending of (1) and (2) Profile retrieval from perturbing guess to match measured sounder radiances

43 Example GOES Sounding

44 GOES-12 Sounder – Brightness Temperature (Radiances) – 12 bands

45 Extra slides

46 Sounder Retrieval Products Direct brightness temperatures Derived in Clear Sky 20 retrieved temperatures (at mandatory levels) 20 geo-potential heights (at mandatory levels) 11 dewpoint temperatures (at 300 hPa and below) 3 thermal gradient winds (at 700, 500, 400 hPa) 1 total precipitable water vapor 1 surface skin temperature 2 stability index (lifted index, CAPE) Derived in Cloudy conditions 3 cloud parameters (amount, cloud top pressure, and cloud top temperature) Mandatory Levels (in hPa) sfc78030070 100070025050 95067020030 92050015020 85040010010

47

48 Spectral distribution of radiance contributions due to profile uncertainties Spectral distribution of reflective changes for emissivity increments of 0.01

49 Spatial smoothness of temperature solution with and wo sfc reflection standard deviation of second spatial derivative ( multiplied by 100 * km * km) Average absolute temp diff (solution with and wo sfc reflection vs raobs)

50 BT differences resulting from 10 ppmv change in CO2 concentration

51 Radiation is governed by Planck’s Law c 2 / T B(,T) = c 1 /{ 5 [e -1] } In microwave region c 2 /λT << 1 so that c 2 / T e = 1 + c 2 /λT + second order And classical Rayleigh Jeans radiation equation emerges B λ (T)  [c 1 / c 2 ] [T / λ 4 ] Radiance is linear function of brightness temperature.

52 Microwave Form of RTE atm p s  ' λ (p) ref atm sfc I sfc = ε λ B λ (T s )  λ (p s ) + (1-ε λ )  λ (p s )  B λ (T(p)) d ln p     λ o  ln p         p s  ' λ (p)     I λ = ε λ B λ (T s )  λ (p s ) + (1-ε λ )  λ (p s )  B λ (T(p)) d ln p    o  ln p     o  λ (p)__________ +  B λ (T(p)) d ln p sfc p s  ln p In the microwave region c 2 /λT << 1, so the Planck radiance is linearly proportional to the temperature B λ (T)  [c 1 / c 2 ] [T / λ 4 ] So o  λ (p) T bλ = ε λ T s (p s )  λ (p s ) +  T(p) F λ (p) d ln p p s  ln p where  λ (p s ) F λ (p) = { 1 + (1 - ε λ ) [ ] 2 }.  λ (p)

53

54 Spectral regions used for remote sensing of the earth atmosphere and surface from satellites.  indicates emissivity, q denotes water vapour, and T represents temperature.

55 Relevant Material in Applications of Meteorological Satellites CHAPTER 6 - DETECTING CLOUDS 6.1 RTE in Cloudy Conditions6-1 6.2Inferring Clear Sky Radiances in Cloudy Conditions6-2 6.3finding Clouds6-3 6.3.1Threshold Tests for Finding Cloud6-4 6.3.2Spatial Uniformity Tests to Find Cloud6-8 6.4The Cloud Mask Algorithm6-10 CHAPTER 7 - SURFACE TEMPERATURE 7.1 Sea Surface Temperature Determination7-1 7.2. Water Vapor Correction for SST Determinations7-3 7.3Accounting for Surface Emissivity in the Determination of SST7-6 CHAPTER 8 - TECHNIQUES FOR DETERMINING ATMOSPHERIC PARAMETERS 8.1 Total Water Vapor Estimation8-1 8.3 Cloud Height and Effective Emissivity Determination8-8

56 First Order Estimation of TPW Moisture attenuation in atmospheric windows varies linearly with optical depth. - k u  = e = 1 - k u For same atmosphere, deviation of brightness temperature from surface temperature is a linear function of absorbing power. Thus moisture corrected SST can inferred by using split window measurements and extrapolating to zero k T s = T bw1 + [ k w1 / (k w2 - k w1 ) ] [T bw1 - T bw2 ]. Moisture content of atmosphere inferred from slope of linear relation.

57 Water vapour evaluated in multiple infrared window channels where absorption is weak, so that  w = exp[- k w u] ~ 1 - k w u where w denotes window channel and d  w = - k w du What little absorption exists is due to water vapour, therefore, u is a measure of precipitable water vapour. RTE in window region u s I w = B sw (1-k w u s ) + k w  B w du o u s represents total atmospheric column absorption path length due to water vapour, and s denotes surface. Defining an atmospheric mean Planck radiance, then _ _ u s u s I w = B sw (1-k w u s ) + k w u s B w with B w =  B w du /  du o o Since B sw is close to both I w and B w, first order Taylor expansion about the surface temperature T s allows us to linearize the RTE with respect to temperature, so _ T bw = T s (1-k w u s ) + k w u s T w, where T w is mean atmospheric temperature corresponding to B w.

58 Two unknowns,  and Pc, require two measurements Radiance from a partly cloudy FOV

59 Cloud Clearing For a single layer of clouds, radiances in one spectral band vary linearly with those of another as cloud amount varies from one field of view (fov) to another Clear radiances can be inferred by extrapolating to cloud free conditions. R CO2 R IRW cloudy clear x xx x x partly cloudy N=1N=0


Download ppt "Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA."

Similar presentations


Ads by Google