The Fundamental Theorem of Algebra And Zeros of Polynomials

Slides:



Advertisements
Similar presentations
The Rational Zero Theorem
Advertisements

In order to solve this equation, the first item to consider is: “How many solutions are there?” Let’s look at some equations and consider the number of.
2.5 complex 0’s & the fundamental theorem of algebra
Roots & Zeros of Polynomials
Section 6.6 Finding Rational Zeros. Rational Zero Theorem Synthetic & Long Division Using Technology to Approximate Zeros Today you will look at finding.
Splash Screen.
Splash Screen.
Complex Numbers The imaginary number i is defined as so that Complex numbers are in the form a + bi where a is called the real part and bi is the imaginary.
6.5 & 6.6 Theorems About Roots and the Fundamental Theorem of Algebra
2.5 Zeros of Polynomial Functions
Zeros of Polynomial Functions
LIAL HORNSBY SCHNEIDER
Pre-Calculus For our Polynomial Function: The Factors are:(x + 5) & (x - 3) The Roots/Solutions are:x = -5 and 3 The Zeros are at:(-5, 0) and (3, 0)
1 5.6 Complex Zeros; Fundamental Theorem of Algebra In this section, we will study the following topics: Conjugate Pairs Theorem Finding a polynomial function.
Roots & Zeros of Polynomials II
Rational Root Theorem. Finding Zeros of a Polynomial Function Use the Rational Zero Theorem to find all possible rational zeros. Use Synthetic Division.
Solving Polynomial Equations. Fundamental Theorem of Algebra Every polynomial equation of degree n has n roots!
Section 5.6 – Complex Zeros; Fundamental Theorem of Algebra Complex Numbers Standard form of a complex number is: a + bi. Every complex polynomial function.
OBJECTIVES: 1. USE THE FUNDAMENTAL THEOREM OF ALGEBRA 2. FIND COMPLEX CONJUGATE ZEROS. 3. FIND THE NUMBER OF ZEROS OF A POLYNOMIAL. 4. GIVE THE COMPLETE.
The Rational Zero Theorem
Lesson 2.5 The Fundamental Theorem of Algebra. For f(x) where n > 0, there is at least one zero in the complex number system Complex → real and imaginary.
Zeros of Polynomials PolynomialType of Coefficient 5x 3 + 3x 2 + (2 + 4i) + icomplex 5x 3 + 3x 2 + √2x – πreal 5x 3 + 3x 2 + ½ x – ⅜rational 5x 3 + 3x.
Sullivan Algebra and Trigonometry: Section 5.6 Complex Zeros; Fundamental Theorem of Algebra Objectives Utilize the Conjugate Pairs Theorem to Find the.
Polynomial Functions Chapter 2 Part 1. Standard Form f(x)=ax 2 +bx+c Vertex Form f(x)=a(x-h) 2 +k Intercept Form f(x)=a(x-d)(x-e) y-int (0, c) let x =
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
Bell Ringer 1. What is the Rational Root Theorem (search your notebook…Unit 2). 2. What is the Fundamental Theorem of Algebra (search your notebook…Unit.
Academy Algebra II/Trig 5.5: The Real Zeros of a Polynomial Functions HW: p.387 (14, 27, 30, 31, 37, 38, 46, 51)
A3 3.4 Zeros of Polynomial Functions Homework: p eoo, odd.
Complex Zeros; Fundamental Theorem of Algebra
9.9 The Fundamental Theorem of Algebra
Zeros of Polynomial Functions Section 2.5 Page 312.
Fundamental Theorem of Algebra If f(x) is a polynomial of degree n, where n≥1, then the equation f(x) = 0 has at least one complex root. Date: 2.6 Topic:
Precalculus Complex Zeros V. J. Motto. Introduction We have already seen that an nth-degree polynomial can have at most n real zeros. In the complex number.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Real Zeros of a Polynomial Function Objectives: Solve Polynomial Equations. Apply Descartes Rule Find a polynomial Equation given the zeros.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
6.6 The Fundamental Theorem of Algebra
Ch 2.5: The Fundamental Theorem of Algebra
Lesson 2.5, page 312 Zeros of Polynomial Functions Objective: To find a polynomial with specified zeros, rational zeros, and other zeros, and to use Descartes’
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Zeros of Polynomials 2.5.
Section 3.3 Theorems about Zeros of Polynomial Functions.
Copyright © 2009 Pearson Education, Inc. CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions.
Section 4.4 Theorems about Zeros of Polynomial Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Introduction Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial.
The Fundamental Theorem of Algebra 1. What is the Fundamental Theorem of Algebra? 2. Where do we use the Fundamental Theorem of Algebra?
Remainder Theorem If f(x) is divided by x – r, then the remainder is equal to f(r). We can find f(r) using Synthetic Division.
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
THE FUNDAMENTAL THEOREM OF ALGEBRA. Descartes’ Rule of Signs If f(x) is a polynomial function with real coefficients, then *The number of positive real.
Zero of Polynomial Functions Factor Theorem Rational Zeros Theorem Number of Zeros Conjugate Zeros Theorem Finding Zeros of a Polynomial Function.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
I am able to solve a quadratic equation using complex numbers. I am able to add, subtract, multiply, and divide complex numbers. Solve the equation.
Section 2.5. Objectives:  Use the Fundamental Theorem of Algebra to determine the number of zeros of a polynomial function.  Find all zeros of polynomial.
Algebra 2 List all the integer factors for the number below: 36.
Zeros of Polynomial Functions A-APR.2 Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is.
Zeros (Solutions) Real Zeros Rational or Irrational Zeros Complex Zeros Complex Number and its Conjugate.
3.3 Dividing Polynomials.
College Algebra Chapter 3 Polynomial and Rational Functions
Bell Ringer 1. What is the Rational Root Theorem
Zeros of Polynomial Functions
The Rational Zero Theorem
3.3 Dividing Polynomials.
Finding Zeros of Polynomials
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
The Fundamental Theorem of Algebra And Zeros of Polynomials
The Rational Zero Theorem
1) Find f(g(x)) and g(f(x) to show that f(x) and g(x) are inverses
Presentation transcript:

The Fundamental Theorem of Algebra And Zeros of Polynomials Section 2.4 The Fundamental Theorem of Algebra And Zeros of Polynomials

Zeros Theorem Every polynomial of degree n ≥ 1 has exactly n zeros, provided that a zero of multiplicity k is counted k times.

Zeros of a Polynomial

a + bi 2 parts of the definition 1. 2. By definition . . . Real Part   2 parts of the definition a + bi 1. 2. By definition . . .   Real Part Imaginary Part

Conjugate Zeros Theorem  

Finding the Rational Zeros of a Polynomial List all possible rational zeros of the polynomial using the Rational Zero Theorem. Use synthetic division on each possible rational zero and the polynomial until one gives a remainder of zero. This means you have found a zero, as well as a factor. Write the polynomial as the product of this factor and the quotient. Repeat procedure on the quotient until the quotient is quadratic. Once the quotient is quadratic, factor or use the quadratic formula to find the remaining real and imaginary zeros.

The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all possible rational roots of a polynomial equation. Not every number in the list will be a zero of the function, but every rational zero of the polynomial function will appear somewhere in the list. The Rational Zero Theorem If f (x) = anxn + an-1xn-1 +…+ a1x + a0 has integer coefficients and (where is reduced) is a rational zero, then p is a factor of the constant term a0 and q is a factor of the leading coefficient an.

EXAMPLE: Using the Rational Zero Theorem List all possible rational zeros of f (x) = 15x3 + 14x2 - 3x – 2. Solution The constant term is –2 and the leading coefficient is 15. Divide 1 and 2 by 1. Divide 1 and 2 by 3. Divide 1 and 2 by 5. Divide 1 and 2 by 15. There are 16 possible rational zeros. The actual solution set to f (x) = 15x3 + 14x2 - 3x – 2 = 0 is {-1, -1/3, 2/5}, which contains 3 of the 16 possible solutions.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Because we are given an equation, we will use the word "roots," rather than "zeros," in the solution process. We begin by listing all possible rational roots.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution The graph of f (x) = x4 - 6x2 - 8x + 24 is shown the figure below. Because the x-intercept is 2, we will test 2 by synthetic division and show that it is a root of the given equation. x-intercept: 2 2 0 -6 -8 24 2 4 -4 -24 1 2 -2 -12 0 The zero remainder indicates that 2 is a root of x4 - 6x2 - 8x + 24 = 0.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Now we can rewrite the given equation in factored form. x4 - 6x2 + 8x + 24 = 0 This is the given equation. (x – 2)(x3 + 2x2 - 2x - 12) = 0 This is the result obtained from the synthetic division. x – 2 = 0 or x3 + 2x2 - 2x - 12 = 0 Set each factor equal to zero. Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Because the graph turns around at 2, this means that 2 is a root of even multiplicity. Thus, 2 must also be a root of x3 + 2x2 - 2x - 12 = 0. 1 2 -2 -12 2 8 12 1 4 6 0 These are the coefficients of x3 + 2x2 - 2x - 12 = 0. The zero remainder indicates that 2 is a root of x3 + 2x2 - 2x - 12 = 0. x-intercept: 2

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Now we can solve the original equation as follows. x4 - 6x2 + 8x + 24 = 0 This is the given equation. (x – 2)(x3 + 2x2 - 2x - 12) = 0 This was obtained from the first synthetic division. (x – 2)(x – 2)(x2 + 4x + 6) = 0 This was obtained from the second synthetic division. x – 2 = 0 or x – 2 = 0 or x2 + 4x + 6 = 0 Set each factor equal to zero. x = 2 x = 2 x2 + 4x + 6 = 0 Solve.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution We can use the quadratic formula to solve x2 + 4x + 6 = 0. We use the quadratic formula because x2 + 4x + 6 = 0 cannot be factored. Let a = 1, b = 4, and c = 6. Multiply and subtract under the radical. Simplify. The solution set of the original equation is {2, -2 - i -2 + i }.

Properties of Polynomial Equations 1. If a polynomial equation is of degree n, then counting multiple roots separately, the equation has n roots. 2. If a + bi is a root of a polynomial equation (b  0), then the non-real complex number a - bi is also a root. Non-real complex roots, if they exist, occur in conjugate pairs.

Descartes' Rule of Signs If f (x) = anxn + an-1xn-1 + … + a2x2 + a1x + a0 be a polynomial with real coefficients. 1. The number of positive real zeros of f is either equal to the number of sign changes of f (x) or is less than that number by an even integer. If there is only one variation in sign, there is exactly one positive real zero. 2. The number of negative real zeros of f is either equal to the number of sign changes of f (-x) or is less than that number by an even integer. If f (-x) has only one variation in sign, then f has exactly one negative real zero.

EXAMPLE: Using Descartes’ Rule of Signs Determine the possible number of positive and negative real zeros of f (x) = x3 + 2x2 + 5x + 4. Solution 1. To find possibilities for positive real zeros, count the number of sign changes in the equation for f (x). Because all the terms are positive, there are no variations in sign. Thus, there are no positive real zeros. 2. To find possibilities for negative real zeros, count the number of sign changes in the equation for f (-x). We obtain this equation by replacing x with -x in the given function. f (-x) = (-x)3 + 2(-x)2 + 5(-x) + 4 f (x) = x3 + 2x2 + 5x + 4 This is the given polynomial function. Replace x with -x. = -x3 + 2x2 - 5x + 4

EXAMPLE: Using Descartes’ Rule of Signs Determine the possible number of positive and negative real zeros of f (x) = x3 + 2x2 + 5x + 4. Solution Now count the sign changes. f (-x) = -x3 + 2x2 - 5x + 4 1 2 3 There are three variations in sign. # of negative real zeros of f is either equal to 3, or is less than this number by an even integer. This means that there are either 3 negative real zeros or 3 - 2 = 1 negative real zero.