Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna

Slides:



Advertisements
Similar presentations
Oxford University and RAL November 20th and 21st
Advertisements

The SNO+ Experiment: Overview and Status
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
New Large* Neutrino Detectors
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Recent results from Borexino
Low Energy Neutrino Astrophysics
LAGUNA and Neutrino Physics NOW 2008 Lothar Oberauer TU München, Germany.
Neutrino Physics - Lecture 5 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Queen’s University, Kingston, ON, Canada
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
李玉峰 中科院高能所 JUNO中微子天文和天体物理学研讨会
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
Application of neutrino spectrometry
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Search for Sterile Neutrino Oscillations with MiniBooNE
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
The first year of Borexino data Davide Franco on behalf of the Borexino Collaboration Milano University & INFN Heavy Quarks and Leptons June 5-9, 2008.
Cosmic muon signal and its seasonal modulation at Gran Sasso with the Borexino detector Davide D’Angelo for the Borexino Collaboration Università degli.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar and Geo Neutrino Physics with Borexino RICAP
New Results from the Borexino Neutrino Experiment
Neutrinoastrophysik bei niedrigen Energien BOREXINO and LAGUNA
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna MPIK Heidelberg, November 2009 Lothar Oberauer, Physikdepartment E15, TU München

Solar Neutrinos Borexino results SNO results What do we know now about solar neutrino branches ? What can we learn about neutrino oscillation parameter ?

The dominating solar pp - cycle H. Bethe W. Fowler pp - 1 pp -2 pp -3

The sub-dominant solar CNO - cycle …dominates in stars with more mass as our sun… =>Large astrophysical relevance Measurement of CNO neutrinos = determination of inner solar metallicity

Solar Neutrinos Neutrino Energy in MeV L. Oberauer, TUM

BOREXINO Neutrino electron scattering n e -> n e Liquid scintillator technology (~300t): Low energy threshold (~60 keV) Good energy resolution (~ 5% @ 1 MeV) very low background Sensitivity on sub-MeV neutrinos Online since May 16th, 2007 L. Oberauer, TUM

Neutrino elastic scattering off electrons Cross section for ne is larger (factor ~5) as for nm,t Expected rate without neutrino mixing ~ 74 counts per day and 100t target Expected rate with neutrino mixing (MSW-LMA) ~ 48 c/(d 100 t) L. Oberauer, TUM

BOREXINO in the Italian Gran Sasso Underground Laboratory in the mountains of Abruzzo, Italy, ~120 km from Rome Laboratori Nazionali del Gran Sasso LNGS Shielding ~3500 m.w.e External Labs Borexino Detector and Plants

BOREXINO Detector layout Stainless Steel Sphere: 2212 PMTs + concentrators 1350 m3 Scintillator: 270 t PC+PPO in a 150 mm thick nylon vessel Water Tank: g and n shield m water Č detector 208 PMTs in water 2100 m3 Nylon vessels: Inner: 4.25 m Outer: 5.50 m Excellent shielding of external background Increasing purity from outside to the central region Carbon steel plates L. Oberauer, TUM

Background in Borexino Muons leak rate Muon-Veto < 0.5 % including pulse-shape Inner Detector < 0.01 % Muon generated radionuclides (long lifetime > 2 sec) 11C = 0.25 counts / (d t) 10C ~ 5 x 10-3 counts / (d t) 11Be < 1.5 x 10-3 counts / (d t) Internal background Uranium = 1.6 x 10-17 g/g Thorium = 6.8 x 10-18 g/g Knat < 10-14 g/g 14C ~ 2 x 10-18 85Kr ~ 0.29 counts / (d t) L. Oberauer, TUM

Cuts for solar 7Be neutrinos Data taking 192 days lifetime Muon cut Radon delayed coincidences (Bi-Po and decays before incl. radon) Fiducial volume cut (~ 100 t target) Alpha/Beta separation by pulse shape analysis (optional) L. Oberauer, TUM

Results on solar 7Be neutrinos Counting rate on solar 7Be-neutrinos: 49 ± 3stat ± 4sys /(d 100t) L. Oberauer, TUM

Results on solar 8B - neutrinos No neutrino mixing neutrino mixing plus (MSW) effect New data for solar 8B neutrinos L. Oberauer, TUM

Systematic uncertainties Calibration with radioactive sources (since winter 2008/09) Study of response function (e.g. gamma quenching, kb – parameter…) L. Oberauer, TUM

Implications of solar 7Be neutrino result Borexino exp. result: 49 ± 3stat ± 4sys / (d 100t) Solar model (high metallicity, neutrino mixing, MSW): 48 ± 4 / (d 100t) Solar model (low metallicity, neutrino mixing, MSW): 44 ± 4 / (d 100t) Solar model, but no neutrino mixing: 74 ± 4 / (d 100t) Clear confirmation of neutrino mixing and MSW L. Oberauer, TUM

Implications of solar 7Be-neutrino result f = measured / expected (solar model, MSW) Before Borexino fBe = After Borexino fBe = New constraints on pp- and CNO-fluxes from BOREXINO and all other solar neutrino experiments => L. Oberauer, TUM

CNO contribution to solar energy generation Without solar luminosity constraint With solar luminosity constraint CNO contribution to solar energy generation < 5.4 % (90 % cl) L. Oberauer, TUM

Correlation between constraints on pp- and CNO- fluxes Borexino result and solar luminosity constraint fCNO < 4.8 (90 %cl) L. Oberauer, TUM

Survival probability at Earth for solar ne as function of their energy Measurements and expectations (MSW effect) Borexino L. Oberauer, TUM

Prospects of BOREXINO Improvement of systematical uncertainties 7Be flux measurement at < 5 % total uncertainty 8B flux measurement with increased statistics Measurement of pep and CNO-neutrinos (if 11C event rejection and purity allows…) ne measurement by ne p -> e+ n => Geo neutrinos & reactor neutrinos Supernova neutrinos (~100 events) for a galactic SN type II , limits on magnetic moment… L. Oberauer, TUM

Search for Day/Night effect The Day Night asymmetry of signal+background is zero within 1 sigma

New Analysis of SNO phases I and II Threshold at 3.5 MeV (nucl-ex:09102984)

Two flavor neutrino oscillation hypothesis analysis Global fit including: Solar neutrino experimental results (SNO, Cl, Gallex/GNO, Sage, Borexino, SK I & II) KamLAND reactor neutrino data (SNO collaboration: nucl-ex:09102984)

Three flavor neutrino oscillation analysis nucl-ex:09102984

Three flavor neutrino oscillation analysis Current best parameter values from solar neutrino experiments and KamLAND Q12 = (34.06 + 1.16 – 0.84) degrees Dm212 = (7.59 + 0.20 – 0.21) eV2 Three flavor neutrino oscillation analysis sin2Q13 = (2.00 + 2.09 - 1.63) x 10-2 Limit on Q13: sin2Q13 < 0.057 (95% cl) nucl-ex:09102984

Prospects of low energy neutrino astronomy in Europe 3 large detector types are proposed 0.4 Mt Water Cherenkov (Memphis) 100 kt Liquid Argon (Glacier) 50 kt Liquid Scintillator (LENA) LAGUNA: design study for a future underground facility in Europe (report completed in 2010)

Physics Goals Proton Decay Long baseline neutrino oscillations Diffuse Supernova Neutrino Background Galactic Supernova Burst Solar Neutrinos Geo neutrinos Reactor neutrinos Atmospheric neutrinos Dark Matter indirect search T. Lachenmaier my talk today

Search for the Diffuse Supernova Neutrino Background in LENA Phys.Rev.D 75 (2007) 023007 M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia, L. Oberauer, W. Potzel, J. Winter Technische Universität München mwurm@ph.tum.de http://www.e15.physik.tu-muenchen.de/research/lena.html

DSNB Detection via inverse beta decay Free protons as target Delayed signal (~200 ms) Threshold 1.8 MeV En ~ Ee - Q (n spectroscopy) suppress background via delayed coincidence method n + p -> D + g (2.2 MeV) position reconstruction => fiducial volume (suppress external background) Prompt signal

LENA at Pyhäsalmi (Finland) Outline DSNB Background Event Rates Spectroscopy LENA at Pyhäsalmi (Finland) DSN event rate in 10yrs inside the energy window from 9.7 to 25 MeV dependent on SN model and on Supernova rate as function of redshift z Number of events 20 – 200 (10 years) ~25% of events are due to v’s originating from SN @ z>1 TU München

Diffuse Supernova Neutrino Background Detection Excellent background rejection Energy window 10 to 30 MeV. High efficiency (100% with 50 kt target) High discovery potential in LENA ~2 to 20 events per year are expected (model dependent)

Galactic Supernova neutrino burst in LENA

Separation of SN models ? Yes! Possible independent from oscillation model due to neutral current reactions in LENA TBP KRJ LL 12-C: 700 950 2100 Nu-p: 1500 2150 5700 for 8 solar mass progenitor and 10 kpc distance

Supernova neutrinos with LENA Antielectron n spectrum with high precision Electron n flux with ~ 10 % precision Total flux via neutral current reactions Separation of SN models Spectroscopy of all n flavors Time evolution of neutrino burst Details of SN gravitational collapse Chance to separate low/high Q13 and mass hierarchy (normal/inverted) Coincidence with gravitational wave detectors

Solar Neutrino Detection in LENA

Solar Neutrinos and LENA n + e -> n + e and 13C + ne -> 13N + e

Solar Neutrinos and LENA High statistics in 7-Be Search for time fluctuations CNO and pep n Test of MSW effect CC and NC measurements of 8-B Search for spectrum deformation Search for non-standard n interactions Search for solar ne -> ne transitions

LENA and neutrinos from the Earth

Sensitivity on U, Th arbitrary units Energy threshold 1st detection of Geo-neutrinos in KamLAND in 2005 (1kt liquid scintillator detector)

Signal & Backgrounds in LENA ~ 1500 per year signal ~ 240 per year in [1.8 MeV – 3.2 MeV] from reactor neutrinos < 30 per year due to 210Po alpha -n reaction on 13C (Borexino purity assumed) ~ 1 per year due to cosmogenic background (9Li - beta-neutron cascade) Can be statistically subtracted K. Hochmuth et al., Astropart.Phys. 27 (2007) 21-29

LENA and Geo-neutrinos LENA is the only detector within Laguna able to determine the geo neutrino flux In LENA we expect between 300 to 3000 events per year (“best bet” ~ 1500 / year) Good signal / background ratio most significant contribution can be subtracted statistically Separation of geological models

LENA and Reactor neutrinos At Frejus ~ 17,000 events per year High precision on solar oscillation parameter: Dm212 ~ 1% Q12 ~ 10% S.T. Petcov, T. Schwetz, Phys. Lett. B 642, (2006), 487 J. Kopp et al., JHEP 01 (2007), 053

Pre-feasibility study for LENA at Pyhäsalmi (TUM and company Rockplan, Finland) Depth at 1400 m – 1500 m possible Geological study completed Vertical detector position Logistics (Vent, Electricity, etc.) considered Construction time of cavern ~ 4 years 1st costs estimate for the whole project

One Option: + Tank Construction: 8 years

Conclusions Solar neutrino experiments very successful Strong impact on neutrino oscillation parameter Precise determination of solar nuclear fusion processes Missing CNO-neutrinos -> determination of solar inner metallicity Geo neutrinos (stay tuned !) Prospects (Large detectors like LENA) in this field & proton decay and long baseline experiments L. Oberauer, TUM