Chapter 9: Nuclear Chemistry

Slides:



Advertisements
Similar presentations
1 Chapter 11 Nuclear Chemistry Use of 131 I in detecting Hyper- or hypo- thyroidism.
Advertisements

Chapter 4 & 25 Nuclear Chemistry
Chapter 25.  Marie Curie was a Polish scientist whose research led to many discoveries about radiation and radioactive elements. In 1934 she died from.
Chapter 13 Nuclear Reactions.
CMH 121 Luca Preziati Chapter 9: Nuclear Chemistry.
2 - 1 CH 104 Chapter 3: Nuclear Chemistry Radioactivity Nuclear Equations Radiation Detection Half-Life Medical Applications Fission & Fusion.
Chapter 4 Radioactivity and Medicine A CT scan (computed tomography) of the brain using X-ray beams.
Chapter 9: Nuclear Chemistry
AMOLE Radioactivity. Science Park HS -- Honors Chemistry Early Pioneers in Radioactivity Roentgen: Discoverer of X- rays 1895 Becquerel: Discoverer of.
Nuclear Chemistry Reactions and properties of nucleus M p n Mass number (number of nucleons) nuclide : nuclear species Isotopes : nuclides of same chemical.
Nuclear Chemistry Part 2. Nuclear Chemistry Introduction In this section, we study some of the properties of the nucleus, its particles, and nuclear.
Differentiating Chemical Reactions from Nuclear Reactions 1.
NUCLEAR CHEMISTRY By Mr M. Radiation All elements after bismuth are radioactive All elements after bismuth are radioactive Some others are, but only in.
Radioactivity Chapter 21  Natural occurring phenomena.  In the nucleus of an atom there are protons and neutrons. Protons are positively charged so they.
Nuclear Chemistry. Images elements.html elements.html.
Chapter 24 Applications of Nuclear Chemistry Read introduction page 776 Quick review of chapter 3 notes.
1 Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.
Chapter 9 Nuclear Radiation
Nuclear Chemistry Nine Mile Oswego, NY.  Radioisotope – an isotope that is radioactive  Example: Carbon-14  Radioactive isotopes can be naturally occurring,
Nuclear chemistry.
The Nucleus and Radioactivity
Alpha Decay parent nucleus daughter nucleus Atomic number: -2 mass number: -4.
Nuclear Chemistry Chapter 9.
Bettelheim, Brown, Campbell and Farrell Chapter 9
Nuclear Chemistry Introduction Isotopes
Nuclear Chemistry. Radioactive Decay Spontaneous breakdown of an atom’s nucleus Breakdown results in a lighter nucleus Emits electromagnetic radiation.
Nuclear Chemistry. Mass Defect Difference between the mass of an atom and the mass of its individual particles amu amu.
Unit 14 Ch. 28 Nuclear Chemistry
CHAPTER 10 Nuclear Chemistry General, Organic, & Biological Chemistry Janice Gorzynski Smith.
C HAPTER 9 N UCLEAR R ADIATION 9.1 Natural Radioactivity 1.
General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake 4.3 Radiation Measurement Chapter 4 Nuclear Chemistry © 2013 Pearson Education,
CHAPTER 10 CONCURRENT ENROLLMENT CHEMISTRY. RADIOACTIVE NUCLEI Nuclei that undergo spontaneous changes and emit energy in the form of radiation Nuclei.
1 Chemistry 100 Chapter 21 Nuclear Chemistry. 2 Nuclear Equations Nucleons: particles in the nucleus: – p + : proton – n 0 : neutron. Mass number: the.
NUCLEAR VS. CHEMICAL CHEMICAL reactions involve rearranging of atoms: e.g., H 2 +O 2  H 2 O No new atoms are created. Chemistry involves electrons only.
Chapter 9 Nuclear Radiation
1. 1. Differentiate among alpha and beta particles and gamma radiation. 2. Differentiate between fission and fusion. 3. Explain the process half-life.
Chapter 9: Nuclear Changes
3 3-1 © 2003 Thomson Learning, Inc. All rights reserved General, Organic, and Biochemistry, 8e Bettelheim, Brown, Campbell, and Farrell.
1 Nuclear Changes Physical Science Chapter Radioactive decay  The spontaneous breaking down of a nucleus into a slightly lighter nucleus, accompanied.
Transmutation- When the nucleus of one element changes to the nucleus of another Stability- Most elements are very stable - Those above atomic number.
Nuclear Energy. A. What does radioactive mean? 1. Radioactive materials have unstable nuclei, which go through changes by emitting particles or releasing.
NUCLEAR CHEMISTRY I.Unlike other chemical reactions that involve the transfer of electrons, nuclear reactions involve changes in the nucleus II.Transmutations-
Section 1Nuclear Changes Section 1: What is Radioactivity?
RADIATION *Penetrating rays emitted by a radioactive source *Ranges from Cosmic and Gamma Rays to Radio Waves.
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity Copyright © 2009 by Pearson Education, Inc.
Spontaneous emission of radiation when the nucleus of an atom breaks down to form a different element.
Nuclear Chemistry. Natural Radioactivity The spontaneous breakdown of atomic nuclei, accompanied by the release of some form of radiation.
Radioactivity Nucleus – center of the atom containing protons and neutrons –How are the protons and neutrons held together? Strong Force - an attractive.
C HAPTER 9 N UCLEAR R ADIATION 9.1 Natural Radioactivity 1.
Chapter 5: Nuclear Chemistry
10.1 Radioactivity Understand Radioactivity and distinguish between the types of decay.
Chapter 28 Nuclear Chemistry Nuclear Radiation Nuclear Transformations Fission and Fusion Radiation in Your Life.
Nuclear Chemistry College Chemistry. Isotope Notation the number of protons Atomic Mass Atomic Number protons + neutrons.
Nuclear Chemistry Unit 10. Radioactivity The spontaneous emission of radiation by an unstable atomic nucleus. Discovery Henri Becquerel-1896 Worked with.
Nuclear Chemistry: The Heart of Matter. 2 Radioisotopes Radioactive decay Radioactive decay – Many isotopes are unstable – Many isotopes are unstable.
Chemistry – Unit 4 Chapter 25 Nuclear Chemistry.
Chapter 10 Nuclear Chemistry.
2 - 1 CH 104 Chapter 13: Nuclear Chemistry Radioactivity Nuclear Equations Radiation Detection Half-Life Medical Applications Radiometric Dating Fission.
Chapter 9 Book Nuclear Changes #20. I. Nuclear Radiation Radioactivity – Nucleus emits one or more particles – Unstable nuclei Unstable – Nuclei has to.
Nuclear Chemistry Radioactive Decay. A. Types of Radiation  Alpha particle (  )  helium nucleus paper 2+  Beta particle (  -)  electron 1- lead.
Nuclear Chemistry , Standard expectations SPI Describe radioactive decay through a balanced nuclear equation and through an.
Warmup 1.How many protons and neutrons are in: 4 2 He? 2.What are isotopes? 3.What is radiation?
CHAPTER 25 Nuclear Chemistry. Key Terms Radioactivity- the process by which nuclei emit particles and rays Radiation- the penetrating rays and particles.
Nuclear Chemistry Unit 15. I. Nuclear Reactions  A. Involve a change in the nucleus of the atom  1. made of protons and neutrons (called nucleons together)
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Twelfth Edition© 2015 Pearson Education, Inc. Chapter 5 Nuclear Chemistry Radiation.
Nuclear Reactions Chapter 18 Supernova 1999gi in NGC 3184
Chapter 9 Nuclear Radiation.
Chemeketa Community College
Nuclear Chemistry.
Nuclear Chemistry Chapter 9.
Presentation transcript:

Chapter 9: Nuclear Chemistry Radioactivity Nuclear Equations Radiation Detection Half-Life Medical Applications Fission & Fusion

Average Atomic weight of Hydrogen Isotopes of Hydrogen Isotopes = Atoms of the same element but having different masses. 1 2 1 3 1 H H H + - + - + - Protium 99.99% Tritium Trace % Deuterium 0.01% Average Atomic weight of Hydrogen = 1.00794 amu

Average Atomic weight of C= 12.011 amu Isotopes of Carbon C 6 12 C 6 13 C 6 14 - - + - + - + - 98.89% 1.11% Trace % Average Atomic weight of C= 12.011 amu

So falls apart (decays) Giving radioactive particles Radioactive Isotopes 3 1 H C 6 14 - + + - - Hydrogen-3 Carbon-14 Nucleus is unstable So falls apart (decays) Giving radioactive particles

Radioactive Isotopes in Medicine 123 53 I Diagnose thyroid function 131 53 I Treat hyperthyroid (destroys cells) 60 27 Co Destroy tumors (g radiation) Tc 43 99m Diagnose bone, tissue (most common)

Alpha Decay He a Particle Po Pb Po Pb He + 4 2 210 84 + 82 206 210 84

- Beta Decay e C b Particle N n H e -1 14 6 + + - + 7 14 1 1 -1 + -1 e - 14 6 C b Particle + + - + N 7 14 1 n 1 H -1 e + neutron proton electron

- Beta Decay e C b Particle N N e C -1 14 6 + + - + 14 7 14 14 -1 6 7 -1 e - 14 6 C b Particle + + - + N 7 14 14 6 C N 7 14 -1 e +

Gamma Decay 99m 43 Tc g decay + + 99 43 Tc 99m 43 Tc Tc 43 99 g +

Radiation knocks off an electron Ionizing Radiation Radiation knocks off an electron - An ion A radical Ions & radicals cause damaging chain reactions

Radiation knocks off an electron Ions detected by Counter Geiger Counter Radiation knocks off an electron - An ion Gas in instrument tube Ions detected by Counter

Radiation: Penetration through Air + 4 cm b 6-300 cm - 400 m g

Tissue Penetration Depth + 0.05 mm 0.06-5 mm b - >50 cm g

- Radiation: Shielding a b g Heavy Cloth Pb, thick concrete + Pb, thick concrete Paper Cloth b - g

a: Radon gas in Buildings Nuclear Equations a: Radon gas in Buildings 226 88 222 4 2 He Ra Rn + 86 Gas 218 4 2 He Po + 84 Cancer

b: Thyroid check & treatment Nuclear Equations b: Cancer Treatment 60 27 Co 60 -1 e Ni + 28 b: Thyroid check & treatment 131 53 I 131 -1 e Xe + 54

Radiation Detection Activity Curie (Ci): # of disintegrations by of 1g Ra Curie (Ci): 1 Ci = 3.7 x 1010disintegrations sec Becquerel (Bq) 1 Bq = 1 disintegration sec

Radiation Detection Absorbed Dose

- Radiation Detection: Biological Effect Tissue Penetration Depth a b + a - b g Tissue Penetration Depth 0.05 mm 0.06-5 mm >50 cm Radiation Absorbed Dose (Rad) (D): 1 rad = 1 x 10-2 J kg tissue 1 rad = 2.4 x 10-3 cal kg tissue

- Tissue Penetration Depth a b g 0.05 mm 0.06-5 mm >50 cm + 0.05 mm 0.06-5 mm b - >50 cm g Radiation Absorbed Dose (Rad) (D): 1 Gray = 1 J kg tissue 100 rad = 1 Gray

Radiation Detection Biological Damage

Radiation Equivalent for Man (rem) RBE 20 1 a b g 1 Rem = 1 Rad x RBE relative biological effectiveness

Annual Radiation Exposure in USA Total = 170 mrem / yr Cosmic = 40 mrem Air, H2O, Food = 30 mrem X-rays: Chest = 50 mrem Dental = 20 Smoking = 35 mrem TV = 2 mrem Radon = 200 mrem Wood,concrete,bricks = 50 mrem Ground = 15 mrem

Biological Effects of Radiation Dose in rem (at one time) 0-25 genetic damage possible but usually undetected 25-100 decrease # of white blood cells (temporary) 100-200 mild radiation sickness (vomit, diarrhea, strong decrease # white blood cells) >300 (diarrhea, hair loss, infection) 500 LD50 for humans

Biological Effects of Radiation Dose in rem 300 LD50 for dogs 800 LD50 for rats 50,000 LD50 for Bacterium 100,000 LD50 for Insects 500 LD50 for humans

Therapeutic Doses of Radiation Dose in rem 4,500 Lymphoma 5,000 – 6,000 Skin cancer 6,000 Lung cancer 6,000 – 7000 Brain Tumor

FDA approved killing of bacteria with: 0.3 – 1 kGy ionizing radiation from Co-60 or Cs-137 (gamma producers) Strawberries left on counter for 2 weeks. The irradiated berries on right show no spoilage.

Half-Life I t1/2 = Time for 1/2 sample to decay 131 53 5 g 10 g 20 g 8 days 131 53 I 8 days 5 g 10 g 20 g

- + Positron Emission Tomography (PET) e C e 2g rays b+ Positron -1 e electron 11 6 C +1 e - + 2g rays b+ Positron + Detectable g rays  image Shows blood flow + B 5 11 11 6 11 5 B +1 e C + positron

PET Scans Normal Alzheimer's

Known in Britain by the trade name ‘Pedoscope’ Known in Britain by the trade name ‘Pedoscope’. The machine produced an X-ray of the customer’s foot inside a shoe to ensure shoes fitted accurately, which both increased the wear-time of the shoe and with that, the reputation of the shoe shop. The customer placed their foot over an X-ray tube contained within the wooden base of the Pedoscope. From this, a beam of X-rays passed through the foot and cast an image onto a fluorescent screen above. The screen could be observed via three viewing points – one for the shoe-fitter, one for the customer, and one for a third party (usually the guardian of a child being fitted). The accommodation for three viewing points may seem a little extravagant, but it may be an indication of the popularity of the Pedoscope and the interest the public had in the machine.

Shoe-Fitting Fluoroscope (ca. 1930-1940) Basic Description The shoe fitting fluoroscope was a common fixture in shoe stores during the 1930s, 1940s and 1950s. A typical unit, like the Adrian machine shown here, consisted of a vertical wooden cabinet with an opening near the bottom into which the feet were placed. When you looked through one of the three viewing ports on the top of the cabinet (e.g., one for the child being fitted, one for the child's parent, and the third for the shoe salesman or saleswoman), you would see a fluorescent image of the bones of the feet and the outline of the shoes.

Fission Energy Kr U U n Ba Splitting atoms for Energy 91 36 235 92 236 n Energy + unstable 142 56 Ba Uses: Atomic Bomb Nuclear Power

Fission Need critical mass of U-235 to sustain chain reaction to produce enough Energy for an explosion

Fission U-235 Nuclear Power plants: Controlled fission avoids critical mass

Uranium oxide pellet used in nuclear fuel rods. Uranium is the fuel of the nuclear power plant in the US.  However, we can not just dump uranium into the core like we shovel coal into a furnace.  The uranium must be processed and formed into fuel pellets, which are about the size of a pencil eraser.  The fuel pellets are then stacked inside hollow metal tubes to form fuel rods.  Fuel rods are 11 to 25 feet in length.  Each UO2 pellet has the energy equivalent to burning 136 gal of oil, 2.5 tons of wood, or 1 ton of coal.

Trojan Nuclear Power Plant – Rainier, Oregon 44

May 21, 2006

Trojan Nuclear Reactor– Rainier, Oregon 46

Uranium oxide pellet used in nuclear fuel rods. Uranium is the fuel of the nuclear power plant in the US.  However, we can not just dump uranium into the core like we shovel coal into a furnace.  The uranium must be processed and formed into fuel pellets, which are about the size of a pencil eraser.  The fuel pellets are then stacked inside hollow metal tubes to form fuel rods.  Fuel rods are 11 to 25 feet in length.  Each UO2 pellet has the energy equivalent to burning 136 gal of oil, 2.5 tons of wood, or 1 ton of coal.

Yucca Mountain in Nevada – site for nuclear depository?

Conceptual Design of Yucca Mountain Disposal Plan Canisters of waste, sealed in special casks, are shipped to the site by truck or train. Shipping casks are removed, and the inner tube with the waste is placed in a steel, multilayered storage container. An automated system sends storage containers underground to the tunnels. Containers are stored along the tunnels, on their side.

Pros Department of Energy (DOE) In a desert location Isolated away from population centers (Las Vegas, the nearest metropolitan area, is 90 miles away) Secured 1,000 feet under the surface In a closed hydrologic basin Surrounded by federal land Protected by natural geologic barriers Protected by robust engineered barriers and a flexible design

Cons: Nevada's Agency for Nuclear Projects Yucca's location in an active seismic (earthquake) region the presence of numerous earthquake faults (at least 33 in and around the site) and volcanic cinder cones near the site the presence of pathways (numerous interconnecting faults and fractures) that could move groundwater (and any escaping radioactive materials) rapidly through the site to the aquifer beneath and from there to the accessible environment. evidence of hydrothermal activity within the proposed repository block

Putting end to Yucca Mountain project ‘within reach,’ state commission says Jan. 21, 2013 http://www.lasvegassun.com/news/2013/jan/21/putting-end-yucca-mountain-project-within-reach-st/