Efficient Exact Set-Similarity Joins Arvind Arasu Venkatesh Ganti Raghav Kaushik DMX Group, Microsoft Research.

Slides:



Advertisements
Similar presentations
String Similarity Measures and Joins with Synonyms
Advertisements

Arnd Christian König Venkatesh Ganti Rares Vernica Microsoft Research Entity Categorization Over Large Document Collections.
Extending Q-Grams to Estimate Selectivity of String Matching with Low Edit Distance [1] Pirooz Chubak May 22, 2008.
Indexing DNA Sequences Using q-Grams
The A-tree: An Index Structure for High-dimensional Spaces Using Relative Approximation Yasushi Sakurai (NTT Cyber Space Laboratories) Masatoshi Yoshikawa.
Introduction to Computer Science 2 Lecture 7: Extended binary trees
Power-Law Based Estimation of Set Similarity Join Size Hongrae Lee, University of British Columbia Raymond T. Ng, University of British Columbia Kyuseok.
Jiannan Wang (Tsinghua, China) Guoliang Li (Tsinghua, China) Jianhua Feng (Tsinghua, China)
DNA Computing COMP308 I believe things like DNA computing will eventually lead the way to a “molecular revolution,” which ultimately will have a very dramatic.
Top-k Set Similarity Joins Chuan Xiao, Wei Wang, Xuemin Lin and Haichuan Shang University of New South Wales and NICTA.
MMDS Secs Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, October.
The Flamingo Software Package on Approximate String Queries Chen Li UC Irvine and Bimaple
Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik Presented by Bryan Wilhelm.
Speaker: Alexander Behm Space-Constrained Gram-Based Indexing for Efficient Approximate String Search Alexander Behm 1, Shengyue Ji 1, Chen Li 1, Jiaheng.
Models and Security Requirements for IDS. Overview The system and attack model Security requirements for IDS –Sensitivity –Detection Analysis methodology.
1 Primitives for Workload Summarization and Implications for SQL Prasanna Ganesan* Stanford University Surajit Chaudhuri Vivek Narasayya Microsoft Research.
Implementing Mapping Composition Todd J. Green * University of Pennsylania with Philip A. Bernstein (Microsoft Research), Sergey Melnik (Microsoft Research),
Sparse Solutions for Large Scale Kernel Machines Taher Dameh CMPT820-Multimedia Systems Dec 2 nd, 2010.
6/20/2015List Decoding Of RS Codes 1 Barak Pinhas ECC Seminar Tel-Aviv University.
Curve Analogies Aaron Hertzmann Nuria Oliver Brain Curless Steven M. Seitz University of Washington Microsoft Research Thirteenth Eurographics.
Overview of Cryptography Anupam Datta CMU Fall A: Foundations of Security and Privacy.
Creating Difficult Instances of the Post Correspondence Problem Presenter: Ling Zhao Department of Computing Science University of Alberta March 20, 2001.
CS3381 Des & Anal of Alg ( SemA) City Univ of HK / Dept of CS / Helena Wong 1. Introduction - 1 Introduction.
Feature Sensitive Surface Extraction from Volume Data Leif P. Kobbelt Mario Botsch Ulrich Schwanecke Hans-Peter Seidel Computer Graphics Group, RWTH-Aachen.
Finding Similar Items. Set Similarity Problem: Find similar sets. Motivation: Many things can be modeled/represented as sets Applications: –Face Recognition.
Finding Similar Items.
1 Notes 06: Efficient Fuzzy Search Professor Chen Li Department of Computer Science UC Irvine CS122B: Projects in Databases and Web Applications Spring.
Cost-Based Variable-Length-Gram Selection for String Collections to Support Approximate Queries Efficiently Xiaochun Yang, Bin Wang Chen Li Northeastern.
CSCD343- Introduction to databases- A. Vaisman1 Relational Algebra.
On the Complexity of Join Predicates Jeff Naughton with Jin-Yi Cai, Venkatesan Chakaravarthy,Raghav Kaushik, Jignesh Patel, Karthikeyan Ramasamy.
UCSC 1 Aman ShaikhICNP 2003 An Efficient Algorithm for OSPF Subnet Aggregation ICNP 2003 Aman Shaikh Dongmei Wang, Guangzhi Li, Jennifer Yates, Charles.
Efficient Parallel Set-Similarity Joins Using Hadoop Chen Li Joint work with Michael Carey and Rares Vernica.
Fast Set Intersection in Memory Bolin Ding Arnd Christian König UIUC Microsoft Research.
Hashed Samples Selectivity Estimators for Set Similarity Selection Queries.
A Grammar-based Entity Representation Framework for Data Cleaning Authors: Arvind Arasu Raghav Kaushik Presented by Rashmi Havaldar.
Efficient Exact Similarity Searches using Multiple Token Orderings Jongik Kim 1 and Hongrae Lee 2 1 Chonbuk National University, South Korea 2 Google Inc.
VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams Chen Li Bin Wang and Xiaochun Yang Northeastern University,
Efficient Parallel Set-Similarity Joins Using MapReduce Rares Vernica, Michael J. Carey, Chen Li Speaker : Razvan Belet.
Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach Wenjie Zhang, Xuemin Lin The University of New South Wales & NICTA Ming Hua,
Michael Cafarella Alon HalevyNodira Khoussainova University of Washington Google, incUniversity of Washington Data Integration for Relational Web.
1 Efficient Search Ranking in Social Network ACM CIKM2007 Monique V. Vieira, Bruno M. Fonseca, Rodrigo Damazio, Paulo B. Golgher, Davi de Castro Reis,
Top-k Set Similarity Joins Chuan Xiao, Wei Wang, Xuemin Lin and Haichuan Shang Univ. of New South Wales, Austrailia ICDE ’09 9 Feb 2011 Taewhi Lee Based.
Finding Similar Items 1 Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Lecture 10: Finding Similar Items Mining.
1 Pattern Matching Using n-gram Sampling Of Cumulative Algebraic Signatures : Preliminary Results Witold Litwin[1], Riad Mokadem1, Philippe Rigaux1 & Thomas.
Mining Reference Tables for Automatic Text Segmentation Eugene Agichtein Columbia University Venkatesh Ganti Microsoft Research.
Set Containment Joins: The Good, The Bad and The Ugly Karthikeyan Ramasamy Jointly With Jignesh Patel, Jeffrey F. Naughton and Raghav Kaushik.
ICS 321 Fall 2011 The Relational Model of Data (i) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 8/29/20111Lipyeow.
Leonardo Guerreiro Azevedo Geraldo Zimbrão Jano Moreira de Souza Approximate Query Processing in Spatial Databases Using Raster Signatures Federal University.
1 Extending Q-Grams to Estimate Selectivity of String Matching with Low Edit Distance Hongrae Lee, Raymond Ng and Kyuseok Shim.
Presented by: Aneeta Kolhe. Named Entity Recognition finds approximate matches in text. Important task for information extraction and integration, text.
Mining Document Collections to Facilitate Accurate Approximate Entity Matching Presented By Harshda Vabale.
DATA MINING LECTURE 6 Sketching, Min-Hashing, Locality Sensitive Hashing.
Effective Anomaly Detection with Scarce Training Data Presenter: 葉倚任 Author: W. Robertson, F. Maggi, C. Kruegel and G. Vigna NDSS
Rate-Based Query Optimization for Streaming Information Sources Stratis D. Viglas Jeffrey F. Naughton.
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
Efficient Merging and Filtering Algorithms for Approximate String Searches Chen Li, Jiaheng Lu and Yiming Lu Univ. of California, Irvine, USA ICDE ’08.
A new matching algorithm based on prime numbers N. D. Atreas and C. Karanikas Department of Informatics Aristotle University of Thessaloniki.
EFFICIENT ALGORITHMS FOR APPROXIMATE MEMBER EXTRACTION By Swapnil Kharche and Pavan Basheerabad.
Efficient Approximate Search on String Collections Part I
COMP9313: Big Data Management Lecturer: Xin Cao Course web site:
Jiannan Wang (Tsinghua, China) Guoliang Li (Tsinghua, China)
Efficient Similarity Joins for Near Duplicate Detection
TT-Join: Efficient Set Containment Join
Entity Matching : How Similar Is Similar?
Guoliang Li (Tsinghua, China) Dong Deng (Tsinghua, China)
Weighted Exact Set Similarity Join
Efficient Record Linkage in Large Data Sets
Cryptographic Hash Functions Part I
Liang Jin (UC Irvine) Nick Koudas (AT&T Labs Research)
An Efficient Partition Based Method for Exact Set Similarity Joins
Presentation transcript:

Efficient Exact Set-Similarity Joins Arvind Arasu Venkatesh Ganti Raghav Kaushik DMX Group, Microsoft Research

Sept. 15, 2006Set-Similarity Joins2 Data Cleaning NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT LOGISOFT 274 GOODMAN ST N ROCHESTER14607 CIEDC TH ST LINCONLIL92799 INGRAM MCRO 1600 ST ANDREW’S PL SANTA ANA CA92799

Sept. 15, 2006Set-Similarity Joins3 Data Cleaning NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT LOGISOFT 274 GOODMAN ST N ROCHESTER14607 CIEDC TH ST LINCONLIL92799 INGRAM MCRO 1600 ST ANDREW’S PL SANTA ANA CA92799

Sept. 15, 2006Set-Similarity Joins4 Data Cleaning NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT LOGISOFT 274 GOODMAN ST N ROCHESTER14607 CIEDC TH ST LINCONL IL92799 INGRAM MCRO 1600 ST ANDREW’S PL SANTA ANA CA92799

Sept. 15, 2006Set-Similarity Joins5 Data Cleaning NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT LOGISOFT 274 GOODMAN ST N ROCHESTER14607 CIEDC TH ST LINCONL IL92799 INGRAM MCRO 1600 ST ANDREW’S PL SANTA ANA CA92799

Sept. 15, 2006Set-Similarity Joins6 Data Cleaning NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT06901 LOGISOFT 274 GOODMAN ST N ROCHESTERNY14607 CIEDC TH ST LINCOLN IL92799

Sept. 15, 2006Set-Similarity Joins7 String Similarity Join CITY ALABASTER ALBERTVILLE … … … LINCOLN … … YUCAIPA Reference Table……City………………… …… LINCONL …… …………… ……………

Sept. 15, 2006Set-Similarity Joins8 NameStreetCityStateZip INGRAM MICRO 1600 ST ANDREWS PL SANTA ANA CA92799 GTE CORP 1 STAMFORD FORUM STAMFORDCT LOGISOFT 274 GOODMAN ST N ROCHESTER14607 CIEDC TH ST LINCONLIL92799 INGRAM MCRO 1600 ST ANDREW’S PL SANTA ANA CA92799 String Similarity (Self) Join

Sept. 15, 2006Set-Similarity Joins9 Strings  Sets [CGK ’06] microsoftmcrosoft {mc, cr, ro, os, so, of, ft}{mi, ic, cr, ro, os, so, of, ft} (edit distance ≤ 1) ----> (Δ ≤ 4) 2-grams

mcrosoft … … … … … … … microsoft … … … … … … … SR String Sim Join edit distance ≤ 1 Strings  Sets

mcrosoft … … … … … … … microsoft … … … … … … … Set Sim Join Δ ≤ 4 RS Tokenize Post-Process Strings  Sets

Sept. 15, 2006Set-Similarity Joins12 String  Set: Advantages Generalizes to many string similarity funcs Generalizes to many string similarity funcs Powerful primitive Powerful primitive Sets ≈ Relations Sets ≈ Relations Leverage relational data processing Leverage relational data processing [CGK ‘06] [CGK ‘06]

Sept. 15, 2006Set-Similarity Joins13 Contributions New algorithms for set-similarity joins New algorithms for set-similarity joins Exact answers Exact answers Performance guarantees Performance guarantees Outperform previous exact algorithms Outperform previous exact algorithms Orders of magnitude Orders of magnitude Exact answers are important for operators

Sept. 15, 2006Set-Similarity Joins14 Outline Introduction Introduction Algorithms Algorithms Experiments Experiments Conclusion Conclusion

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng }{ mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng }{ mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R Intersection size ≥ 5

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng }{ mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R Intersection size ≥ 5

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng }{ mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R Intersection size ≥ 5

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng } { mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R { mc, cr, ro, os, so, of, ft } { mi, ic, cr, ro, os, so, of, ft } Intersection size ≥ 5

{ mi, ic, cr, ro, os, so, of, ft } { lo, og, gi, is, so, of, ft } { … } { bo, oe, ei, in, ng } { mc, cr, ro, os, so, of, ft } { lg, gi, is, so, of, ft } { … } S R { mc, cr, ro, os, so, of, ft } { mi, ic, cr, ro, os, so, of, ft } Intersection size ≥ 5 { lg, gi, is, so, of, ft } { lo, og, gi, is, so, of, ft }

{ … } { bo, oe, ei, in, ng } { … } S R { mc, cr, ro, os, so, of, ft } { mi, ic, cr, ro, os, so, of, ft } Sim ( r i, s j ) ≥ θ { lg, gi, is, so, of, ft } { lo, og, gi, is, so, of, ft } s2s2s2s2 s3s3s3s3 smsmsmsm s1s1s1s1 r2r2r2r2 r3r3r3r3 rnrnrnrn r1r1r1r1

{ … } { bo, oe, ei, in, ng } { … } S R { mc, cr, ro, os, so, of, ft } { mi, ic, cr, ro, os, so, of, ft } Sim ( r i, s j ) ≥ θ { lg, gi, is, so, of, ft } { lo, og, gi, is, so, of, ft } s2s2s2s2 s3s3s3s3 smsmsmsm s1s1s1s1 r2r2r2r2 r3r3r3r3 rnrnrnrn r1r1r1r1 Large

Input: Input: R: r 1, r 2, …, r n (n sets) R: r 1, r 2, …, r n (n sets) S: s 1, s 2, …, s m (m sets) S: s 1, s 2, …, s m (m sets) Output: All pairs (r i, s j ) such that: Output: All pairs (r i, s j ) such that: |r i Δ s j | ≤ k |r i Δ s j | ≤ k Set-Similarity Join: Symmetric Difference ≤ k Running example: k = 4

Sept. 15, 2006Set-Similarity Joins24 Alternate Set Representation s = { 4, 10, 13, 24, 29, 35, 41, 46, 48 }

Sept. 15, 2006Set-Similarity Joins25 Alternate Set Representation s = { 4, 10, 13, 24, 29, 35, 41, 46, 48 } 12550

Sept. 15, 2006Set-Similarity Joins26 Alternate Set Representation s = { 4, 10, 13, 24, 29, 35, 41, 46, 48 } 12550

Sept. 15, 2006Set-Similarity Joins27 Alternate Set Representation s = { 4, 10, 13, 24, 29, 35, 41, 46, 48 } 12550

Sept. 15, 2006Set-Similarity Joins28 Alternate Set Representation s = { 4, 10, 13, 24, 29, 35, 41, 46, 48 } 12550

Sept. 15, 2006Set-Similarity Joins29 Enumeration s r |r Δ s | ≤ 4

Sept. 15, 2006Set-Similarity Joins30 Enumeration s r |r Δ s | ≤ 4

Sept. 15, 2006Set-Similarity Joins31 Enumeration s r |r Δ s | ≤ 4 Errors

Sept. 15, 2006Set-Similarity Joins32 Enumeration s r |r Δ s | ≤ 4

Sept. 15, 2006Set-Similarity Joins33 Enumeration: Signature Generation s,,,,{} Sig (s )

Sept. 15, 2006Set-Similarity Joins34 Enumeration: Signature Generation s,,,,{} Sig (s ) { 0x4f72ba91, 0x29c8af10, 0x594b2c17, 0xa3b0e20f, 0xdd21f32a} Hash32()

Sept. 15, 2006Set-Similarity Joins35 Property of Signatures |r Δ s | ≤ 4 Sig (r ) Sig (s ) ≠ Φ U s r

Sept. 15, 2006Set-Similarity Joins36 Enumeration: Algorithm Generate signatures for each r i, s j Generate signatures for each r i, s j Enumerate (r i, s j ) s.t Sig (r i ) Sig (s j ) ≠ Φ Enumerate (r i, s j ) s.t Sig (r i ) Sig (s j ) ≠ Φ Output those satisfying |r i Δ s j | ≤ 4 Output those satisfying |r i Δ s j | ≤ 4 U

Sept. 15, 2006Set-Similarity Joins37 Enumeration s1s1 s5s5 s2s2 s3s3 s4s4 Sig (s 2 ) Sig (s 5 ) Sig (s 3 ) Sig (s 4 ) U r1r1 r5r5 r2r2 r3r3 r4r4 Sig (s 1 ) Sig (r 2 ) Sig (r 5 ) Sig (r 3 ) Sig (r 4 ) Sig (r 1 ) Sig (r 2 ) Sig (s 1 ) ≠ Φ

Sept. 15, 2006Set-Similarity Joins38 Enumeration s1s1 s5s5 s2s2 s3s3 s4s4 Sig (s 2 ) Sig (s 5 ) Sig (s 3 ) Sig (s 4 ) U r1r1 r5r5 r2r2 r3r3 r4r4 Sig (s 1 ) Sig (r 2 ) Sig (r 5 ) Sig (r 3 ) Sig (r 4 ) Sig (r 1 ) Sig (r 2 ) Sig (s 1 ) ≠ Φ

Sept. 15, 2006Set-Similarity Joins39 Enumeration s1s1 s5s5 s2s2 s3s3 s4s4 Sig (s 2 ) Sig (s 5 ) Sig (s 3 ) Sig (s 4 ) U r1r1 r5r5 r2r2 r3r3 r4r4 Sig (s 1 ) Sig (r 2 ) Sig (r 5 ) Sig (r 3 ) Sig (r 4 ) Sig (r 1 ) Sig (r 2 ) Sig (s 1 ) ≠ Φ Output False positive candidate pairs

S (Id, Elem) R.Sig = S.Sig δ R.Id, S.Id R (Id, Elem) Post-Process each R.Id, S.Id Gen Signatures S’ (Id, Sig)R’ (Id, Sig)

Sept. 15, 2006Set-Similarity Joins41 No False Positive Candidate Pair s r |r Δ s | = 5

Sept. 15, 2006Set-Similarity Joins42 False Positive Candidate Pair s2s2 s1s |r Δ s | = 5

Sept. 15, 2006Set-Similarity Joins43 Enumeration: Performance k = 4

Sept. 15, 2006Set-Similarity Joins44 Enumeration: Performance Ideal Performance k = 4

Sept. 15, 2006Set-Similarity Joins45 Enumeration |r Δ s | ≤ 4 s r

Sept. 15, 2006Set-Similarity Joins46 Enumeration s r |r Δ s | ≤ 4

Sept. 15, 2006Set-Similarity Joins47 Enumeration: Signature Generation s1s

Sept. 15, 2006Set-Similarity Joins48 Enumeration: Signature Generation s1s

Sept. 15, 2006Set-Similarity Joins49 Enumeration: Signature Generation s1s

Sept. 15, 2006Set-Similarity Joins50 Enumeration: Signature Generation s1s

Sept. 15, 2006Set-Similarity Joins51 Enumeration: Signature Generation s1s ( ) 6 2 = 15

Sept. 15, 2006Set-Similarity Joins52 Algorithm Generate signatures for each r i, s j Generate signatures for each r i, s j Enumerate (r i, s j ) s.t Sig (r i ) Sig (s j ) ≠ Φ Enumerate (r i, s j ) s.t Sig (r i ) Sig (s j ) ≠ Φ Output those satisfying |r i Δ s j | ≤ 4 Output those satisfying |r i Δ s j | ≤ 4 U Only the signature function changes

Sept. 15, 2006Set-Similarity Joins53 Enumeration: Performance k = 4

Sept. 15, 2006Set-Similarity Joins54 False Positive Candidate Pair s r |r Δ s | = 5

Sept. 15, 2006Set-Similarity Joins55 Enumeration: Performance k = 4

Sept. 15, 2006Set-Similarity Joins56 Enumeration: Performance k = 4

Sept. 15, 2006Set-Similarity Joins57 PartEnum: Divide and Conquer s1s1 21 k = 4 k 2 = 1 k 1 = 2 Generate signatures using Enumeration

Sept. 15, 2006Set-Similarity Joins58 PartEnum: Asymptotic Performance Theorem: There is an instance of PartEnum such that: Theorem: There is an instance of PartEnum such that: If |r Δ s | > 7.5 k, then r and s do not share a signature with probability 1 – o(1) If |r Δ s | > 7.5 k, then r and s do not share a signature with probability 1 – o(1) The number of signatures per set: O (k 2 ) The number of signatures per set: O (k 2 )

Sept. 15, 2006Set-Similarity Joins59 PartEnum: Summary Set-Similarity Joins with predicate |r Δ s | ≤ k Set-Similarity Joins with predicate |r Δ s | ≤ k Theoretical guarantees Theoretical guarantees First exact algorithm First exact algorithm

Sept. 15, 2006Set-Similarity Joins60 Other results PartEnum extensions: PartEnum extensions: Larger class of set-similarity join predicates Larger class of set-similarity join predicates Jaccard Jaccard Basic idea: reduce to symmetric set difference Basic idea: reduce to symmetric set difference WtEnum class of signature functions: WtEnum class of signature functions: Use frequency of elements Use frequency of elements Weighted set-similarity joins Weighted set-similarity joins

Sept. 15, 2006Set-Similarity Joins61 Outline Introduction Introduction Algorithms Algorithms Experiments Experiments Conclusion Conclusion

S (Id, Elem) R.Sig = S.Sig δ R.Id, S.Id R (Id, Elem) Post-Process each R.Id, S.Id Gen Signatures Implementation DBMS Client + DBMS DBMS Client

Sept. 15, 2006Set-Similarity Joins63 Previous Work Prefix Filtering [CGK ’06] Prefix Filtering [CGK ’06] Exact Exact Locality Sensitive Hashing [IM ’98] Locality Sensitive Hashing [IM ’98] Approximate Approximate False negative rate: 5% False negative rate: 5%

Sept. 15, 2006Set-Similarity Joins64 Data Sets Organization addresses [MS Sales] Organization addresses [MS Sales] Concatenation: Org name, street, city, zip Concatenation: Org name, street, city, zip Input size: 1 million Input size: 1 million Avg. length: 11 words, 58 chars Avg. length: 11 words, 58 chars Tokenization: Words, n-grams Tokenization: Words, n-grams

Sept. 15, 2006Set-Similarity Joins65 Jaccard, 1M, MS Sales

S (Id, Elem) R.Sig = S.Sig δ R.Id, S.Id R (Id, Elem) Post-Process each R.Id, S.Id Gen Signatures Evaluation DBMS DBMS Intermediate Result size Client + DBMS Client

Jaccard, 1M, MS Sales

Sept. 15, 2006Set-Similarity Joins68 Jaccard, Synthetic

Sept. 15, 2006Set-Similarity Joins69 Similar Results for … Other data sets Other data sets DBLP, Synthetic data sets DBLP, Synthetic data sets Other similarity functions Other similarity functions Weighted jaccard Weighted jaccard Edit distance Edit distance

Sept. 15, 2006Set-Similarity Joins70 Conclusion New algorithms for set-similarity joins New algorithms for set-similarity joins Exact Exact Performance guarantees Performance guarantees Outperform previous exact algorithms Outperform previous exact algorithms Search: “data cleaning project”