Chapter 6 Our Solar System and Its Origin Comparative Planetology By studying the differences and similarities between the planets, moons, asteroids.

Slides:



Advertisements
Similar presentations
CHAPTER 5: Formation of the Solar System and Other Planetary Systems.
Advertisements

Formation of the Solar System
Chapter 8 Formation of the Solar System
Formation of the Solar System
Structure & Formation of the Solar System
Chapter 15 The Formation of Planetary Systems
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
ASTR100 (Spring 2008) Introduction to Astronomy The Formation of Planets Prof. D.C. Richardson Sections
Copyright © 2012 Pearson Education, Inc. The Formation of the Solar System.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Orion Nebula: Star-forming Region. Solar Nebula Flattening the Solar Nebula.
Exam Grades Due to the rush to get exams back, I did not record credit for those who wrote out their own answers. If you did write out your own answer.
Chapter 8 Welcome to the Solar System. 8.1 The Search for Origins Our goals for learning What properties of our solar system must a formation theory explain?
The Solar System 1 star 9 8 planets 63 (major) moons
The Origin of the Solar System
Rotation=Spinning Revolution = Orbit The Inner Planets.
An Introduction to Astronomy Part VI: Overview and Origin of the Solar System Lambert E. Murray, Ph.D. Professor of Physics.
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
Our Solar System and Its Origin. What does the solar system look like?
Copyright © 2010 Pearson Education, Inc. Our Solar System.
Comparative Planetology I: Our Solar System
The Origin of the Solar System
The Origin of the Solar System Lecture 13. Homework 7 due now Homework 8 – Due Monday, March 26 Unit 32: RQ1, TY1, 3 Unit 33: RQ4, TY1, 2, 3 Unit 35:
Chapter 8 Formation of the Solar System
Comparative Planetology I: Our Solar System Chapter Seven.
1 Structure & Formation of the Solar System What is the Solar System? –The Sun and everything gravitationally bound to it. There is a certain order to.
Survey of the Solar System
AST 111 Lecture 15 Formation of the Solar System.
Survey of the Solar System. Introduction The Solar System is occupied by a variety of objects, all maintaining order around the sun The Solar System is.
23.1 The Solar System The Solar System.
The Solar SystemSection 3 Section 3: Formation of the Solar System Preview Key Ideas Bellringer Early Astronomy The Nebular Hypothesis Rocks in Space Comets.
Comparative Planetology I: Our Solar System. Guiding Questions 1.Are all the other planets similar to Earth, or are they very different? 2.Do other planets.
The Solar System Chapter 23, Section 1.
Formation of our solar system: The nebular hypothesis (Kant, 1755) Hydrogen (H), He (He) and “stardust” (heavier elements that were formed in previous.
© 2010 Pearson Education, Inc. Formation of the Solar System.
© 2010 Pearson Education, Inc. Solar System Overview Earth, as viewed by the Voyager spacecraft.
Formation of the Solar System
Introduction to the Solar System The bright star Antares embedded in dust and gases.
Chapter 4 Exploring Our Evolving Solar System. Comparing the Planets: Orbits The Solar System to Scale* – The four inner planets are crowded in close.
Formation of the Solar System. A model of the solar system must explain the following: 1.All planets orbit the sun counterclockwise 2.All planets orbit.
© 2010 Pearson Education, Inc. Chapter 8 Formation of the Solar System.
Lecture 32: The Origin of the Solar System Astronomy 161 – Winter 2004.
Comparative Planetology I: Our Solar System Chapter Seven.
Late Work Due 12/20/13 Remember ain’t no butts about it! Sticking your head in the sand won’t make the deadlines go away 11 Days Remain.
The Solar System Chapter The Solar System 99.85% of the mass of our solar system is contained in the Sun 99.85% of the mass of our solar system.
The Origin of the Solar System. I. The Great Chain of Origins A. Early Hypotheses B. A Review of the Origin of Matter C. The Solar Nebula Hypothesis D.
Exam #2 Wednesday, March 31 Review session Monday, March 29 7:30 –9:30 pm Morrison Hall 007.
Universe Tenth Edition Chapter 7 Comparative Planetology I: Our Solar System Roger Freedman Robert Geller William Kaufmann III.
The Planets Ali Nork. Planetary Revolution Planets revolve counterclockwise around Sun Planets revolve counterclockwise around Sun Planets revolve on.
The Gas Giant (Jovian) Planets Jupiter Uranus Saturn Neptune The Terrestrial (Rocky/Metal) Planets Mercury Earth Venus Mars.
Warmup  What is the line of latitude that cuts through the center of the earth?  What is ZERO degrees longitude?  What is 180 degrees longitude?
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
The Formation of Our Solar System The Nebular Hypothesis.
1 Earth and Other Planets 3 November 2015 Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from a great.
The Solar SystemSection 3 Section 3: Formation of the Solar System Preview Key Ideas Bellringer Early Astronomy The Nebular Hypothesis Rocks in Space How.
Unit 5: The Solar System Mr. Ross Brown Brooklyn School for Law and Technology.
Comparative Planetology I: Our Solar System Chapter Seven.
Origins and Our Solar System
Formation of the Solar System Comparative Planetology
Kirkwood Observatory Open House
Our Solar System and Its Origin
Our Solar System and Its Origin
Announcements Brooks Observatory tours (March )
Survey of the Solar System
Formation of the Solar System
Solar System Formation
check activities page Kirkwood link for times and dates
Solar System Formation
Formation of the Solar System and Other Planetary Systems.
Chapter 6 Our Solar System and Its Origin
Presentation transcript:

Chapter 6 Our Solar System and Its Origin

Comparative Planetology By studying the differences and similarities between the planets, moons, asteroids and comets, we can gain a fuller understanding of the solar system as a whole.

Side View of Our Solar System

The Origins of the Solar System: Four Challenges 1)Patterns of Motion 2)Categorizing Planets 3)Asteroids and Comets 4)Exceptions to the Rules

Challenge 1: Patterns of Motion All planets orbit the Sun in the same direction --- counterclockwise when seen from high above the Earth’s North Pole. All planetary orbits lie nearly in the same plane. Almost all planets travel on nearly circular orbits, and the spacing between planetary orbits increases with distance from the Sun according to a fairly regular trend.

Challenge 1: Patterns of Motion - Continued Most planets rotate in the same direction in which they orbit- counterclockwise when seen from above the Earth’s North Pole – with fairly small axial tilts (i.e. < 25 o ) Almost all moons orbit their planet in the same direction as the planet’s rotation and near the planet’s equatorial plane. The Sun rotates in the same direction in which the planets orbit.

Challenge 2: Categorizing Planets

Terrestrial Planets: Earth-like planets. These include Mercury, Venus, Earth and Mars. Jovian Planets: Jupiter-like planets. These include Jupiter, Saturn, Uranus, and Neptune.

Challenge 2 The second challenge for any theory of solar system formation is to explain why the inner and outer solar system planets divide so neatly into two classes. Terrestrial Planets Jovian Planets

Challenge 3 In order for a theory to be complete, it must also address the issue of Asteroids and Comets. Asteroids are small, rocky bodies that orbit the Sun primarily in the asteroid belt. Comets are small, icy bodies that spend most of their lives well beyond the orbit of Pluto. (Oort Cloud) We generally recognize them only on the rare occasions when one visits the inner solar system.

We know today that comets are orbiting the Sun primarily in two broad regions. –The Kuiper (Koy-per) belt: (Begins in the vicinity of the orbit of Neptune ~ 30AU) –The Oort Cloud: Huge spherical region centered on the Sun and extending perhaps half way to nearest stars.

The Third Challenge for any theory of solar system formation is to explain the existence and general properties of the large numbers of asteroids and comets. –Why are there so many? –How did their existence come about?

Challenge 4: Exceptions to the Rule Mercury and Pluto have larger eccentricities. Pluto and Uranus are substantially tilted. Venus rotates backwards. Some objects don’t fit into the general pattern:

Large bodies in the solar system have orderly motions. Planets fall into two main categories: –Small, rocky terrestrial planets. –Large, hydrogen rich gas giants (Jovian planets). Several notable exceptions to these general trends stand out: –Planets with unusual axial tilts or surrounding large moons. –Moons with unusual orbits. Four Major Characteristics of the Solar System

The Nebular Theory In the past few decades, a tremendous amount of evidence has accumulated in support of one model. This model is called the Nebular Theory. This Theory holds that our solar system formed from a giant, swirling interstellar cloud of gas and dust.

Original Cloud is large and diffuse with little rotation The cloud heats up and spins faster and faster as it contracts This results in a spinning, flattened disk, with mass concentrated near the center Nebular Model

What evidence is there in support of the Nebular Theory?

Beta Pictoris (Hubble) Twin Dust disks around a binary star system., taken by the VLA at radio wavelengths

Protoplanetary disks around stars in the constellation Auriga

Protoplanetary disks around stars in the Orion Nebula (Hubble)

Building The Planets Condensation: Sowing the Seeds of Planets –Condensation is the formation of solid or liquid particles from a cloud of gas. –We refer to such solid particles as condensates.

The Ingredients of the Solar Nebula Fell Into Four Categories Based on Their Condensation Temperatures: Metals Rocks Hydrogen compounds Light gases

Temperature Differences in the Solar Nebula Hot Cool

Metals: Include mostly iron, nickel, aluminum Rocks: materials common on the surface of the Earth. Primarily silicon based minerals. Hydrogen Compounds: Molecules such as methane (CH 4 ), ammonia (NH 3 ), and water (H 2 O) that solidify into ices below 150K. Light gases: (hydrogen and helium) never condense under solar nebula conditions.

Accretion: Assembling the Planetesimals The process of growing by colliding and sticking is called accretion. The growing objects that formed by accretion are called planetesimals, which means “pieces of planets”.

Early in the accretion process, there are many Moon sized planetesimals on crisscrossing orbits

As time passes, a few planetesimals grow larger by accretion while others collide and are destroyed

Only the largest planetesimals avoid being destroyed. These bodies will become the planets of this newly formed solar system

Nebular Capture: Making the Jovian Planets Large icy planetesimals of the outer solar system act as seeds for capturing large amounts of hydrogen and helium gas. This is called nebular capture. This explains the large sizes and low densities of the Jovian planets. Nebular capture also explains the formation of the diverse satellite systems of the jovian planets.

The Solar Wind: Clearing Away the Nebula The remaining gas of the solar nebula was blown into interstellar space by the solar wind (a flow of charged particles ejected by the Sun in all directions.) The Solar wind is believed to have been much stronger in the past than it is today.

Leftover Planetesimals Origin of Asteroids and Comets: The strong wind from the young Sun cleared excess gas from the solar nebula, but many planetesimals remained scattered between the newly formed planets. These leftovers became the comets and asteroids.

The Early Bombardment: A Rain of Rock and Ice The collision of a leftover planetesimal with a planet is called an impact, and the responsible planetesimal is called the impactor. On planets with solid surfaces, impacts leave the scars we call impact craters. Impacts were extremely common in the young solar system.

The Earth, Moon and other planets were heavily bombarded with leftover planetesimals.

Captured Moons Some moons have unusual orbits – orbits in the “wrong” direction or with large inclinations to the planet’s equator. These unusual moons are probably leftover planetesimals that were captured into orbit around a planet.

The two moons of Mars are probably captured satellites.

Giant Impacts and the Formation of Our Moon. The largest planetesimals remaining as the planets formed may have been as large as Mars. It is believed that a glancing collision with a Mars sized planetesimal was reponsible for forming our Moon.

Earth Impact with Mars sized Planetesimal Artist’s Conception of the impact of a Mars sized object with Earth which caused the formation of the Moon.

Summary: Meeting the Challenges The nebular theory explains the great majority of important facts contained in our four challenges. However, planetary scientists are still struggling with more quantitative aspects, seeking reasons for the exact sizes, locations, and compositions of the planets.

Other Planetary Systems How common are planetary systems? Observations have confirmed that protoplanetary disks are common. Rapid advances in observational astronomy have allowed us to search for actual planets around other star systems. In the beginning of 1990, there was no conclusive proof that planets existed around any star but the Sun. By 2001, dozens of planet like objects have been detected around other stars.

Doppler shifts allow for the detection of slight motions of a star due to perturbations caused by the orbiting planet.

First 55 Extra-Solar Planets Discovered Approximate masses in terms of the mass of Jupiter Closer than the Earth-Sun distance

End of Section